References

  1. S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 58, 1200 (1980).
  1. H. Stoll, C.M.E. Pavlidou and H. Preuß, On the calculation of correlation energies in the spin-density functional formalism. Theoretica Chimica Acta 49, 143 (1978).
  1. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 38, 3098 (1988).
  1. J.P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Physical Review B 33, 8800 (1986).
  1. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 46, 6671 (1992).
  1. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B 33, 8822 (1986).
  1. C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 37, 785 (1988).
  1. B.G. Johnson, P.M.W. Gill and J.A. Pople, The performance of a family of density functional methods. Journal of Chemical Physics 98, 5612 (1993).
  1. T.V. Russo, R.L. Martin and P.J. Hay, Density Functional calculations on first-row transition metals. Journal of Chemical Physics 101, 7729 (1994).
  1. R. van Leeuwen and E.J. Baerends, Exchange-correlation potential with correct asymptotic behavior. Physical Review A 49, 2421 (1994).
  1. R. Neumann, R.H. Nobes and N.C. Handy, Exchange functionals and potentials. Molecular Physics 87, 1 (1996).
  1. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 3865 (1996).
  1. B. Hammer, L.B. Hansen, and J.K.Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 59, 7413 (1999).
  1. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters 100, 136406 (2008).
  1. J. Tao, J.P. Perdew, V.N. Staroverov and G.E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters 91, 146401 (2003).
  1. Y. Zhao, D.G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics 125, 194101 (2006).
  1. P.H.T. Philipsen, E. van Lenthe, J.G. Snijders and E.J. Baerends, Relativistic calculations on the adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation. Physical Review B 56, 13556 (1997).
  1. P.H.T. Philipsen, and E.J. Baerends, Relativistic calculations to assess the ability of the generalized gradient approximation to reproduce trends in cohesive properties of solids. Physical Review B 61, 1773 (2000).
  1. E.S. Kadantsev, R. Klooster. P.L. de Boeij and T. Ziegler, The Formulation and Implementation of Analytic Energy Gradients for Periodic Density Functional Calculations with STO/NAO Bloch Basis Set. Molecular Physics 105, 2583 (2007).
  1. E.S. Kadantsev and T. Ziegler, Implementation of a Density Functional Theory-Based Method for the Calculation of the Hyperfine A-tensor in Periodic Systems with the Use of Numerical and Slater Type Atomic Orbitals: Application to Paramagnetic Defects. Journal of Physical Chemistry A 112, 4521 (2008).
  1. E.S. Kadantsev and T. Ziegler, Implementation of a DFT Based Method for the Calculation of Zeeman g-tensor in Periodic Systems with the use of Numerical and Slater Type Atomic Orbitals. Journal of Physical Chemistry A 113, 1327 (2009).
  1. F. Kootstra, P.L. de Boeij and J.G. Snijders, Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals. Journal of Chemical Physics 112, 6517 (2000).
  1. P. Romaniello and P.L. de Boeij, Time-dependent current-density-functional theory for the metallic response of solids. Physical Review B 71, 155108 (2005).
  1. J.A. Berger, P.L. de Boeij and R. van Leeuwen, Analysis of the viscoelastic coefficients in the Vignale-Kohn functional: The cases of one- and three-dimensional polyacetylene., Physical Review B 71, 155104 (2005).
  1. P. Romaniello and P.L. de Boeij, Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids., Journal of Chemical Physics 127, 174111 (2007).
  1. J.P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry., Physical Review Letters 103, 026403 (2009).
  1. C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. Journal of Chemical Physics 108, 664 (1998).
  1. Y. Zhang and W. Yang, Comment on “Generalized Gradient Approximation Made Simple”. Physical Review Letters 80, 890 (1998).
  1. C. Adamo and V. Barone, Physically motivated density functionals with improved performances: The modified Perdew.Burke.Ernzerhof model. Journal of Chemical Physics 1996 116, 5933 (1996).
  1. N.C. Handy and A.J. Cohen, Left-right correlation energy. Molecular Physics 99, 403 (2001).
  1. M. Swart, A.W. Ehlers and K. Lammertsma, Performance of the OPBE exchange-correlation functional. Molecular Physics 2004 102, 2467 (2004).
  1. S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry 27, 1787 (2006).
  1. J.I. Rodriguez, A.M. Köster, P.W. Ayers, A. Santos-Valle, A. Vela and G. Merino, An efficient grid-based scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces. Journal of Compututational Chemistry 30, 1082 (2009).
  1. J.I. Rodriguez, R.F.W. Bader, P.W. Ayers, C. Michel, A.W. Gotz and C. Bo, A high performance grid-based algorithm for computing QTAIM properties. Chemical Physics Letters 472, 149 (2009).
  1. J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope. Physical Review B 31, 505 (1985).
  1. A. Klamt and G. Schüürmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society: Perkin Transactions 2, 799 (1993).
  1. D. Skachkov, M. Krykunov, E. Kadantsev, and T. Ziegler, The Calculation of NMR Chemical Shifts in Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory. Journal of Chemical Theory and Computation 6, 1650 (2010).
  1. J.L. Pascual-ahuir, E. Silla and I. Tuñon, GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. Journal of Computational Chemistry 15, 1127 (1994).
  1. B. Delley, The conductor-like screening model for polymers and surfaces. Molecular Simulation 32, 117 (2006).
  1. N.L. Allinger, X. Zhou, J. Bergsma, Molecular mechanics parameters, Journal of Molecular Structure: THEOCHEM 312, 69 (1994).
  1. S. Grimme, J. Anthony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics 132, 154104 (2010).
  1. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density Functional Theory, Journal of Computational Chemistry 32, 1457 (2011).
  1. P. Haas, F. Tran, P. Blaha, and K. H. Schwarz, Construction of an optimal GGA functional for molecules and solids, Physical Review B 83, 205117 (2011).
  1. F. Tran, and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Physical Review Letters 102, 226401 (2009).
  1. D. Alfè, PHON: A program to calculate phonons using the small displacement method, Computer Physics Communications 180, 2622 (2009).
  1. V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method, Journal Physics: Condensed Matter 9, 767 (1997).
  1. M. Cococcioni, and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Physical Review B 71, 035105 (2005).
  1. D. Skachkov, M. Krykunov, and T. Ziegler, An improved scheme for the calculation of NMR chemical shifts in periodic systems based on gauge including atomic orbitals and density functional theory, Canadian Journal of Chemistry 89, 1150 (2011).
  1. M. Kuisma, J. Ojanen, J. Enkovaara, and T.T. Rantala, Kohn-Sham potential with discontinuity for Band gap materials, Physical review B 82, 115106 (2010).
  1. L. Visscher, and K.G. Dyall, Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions, Atomic Data and Nuclear Data Tables 67, 207 (1997).
  1. A.D. Becke, A multicenter numerical integration scheme for polyatomic molecules, Journal of Chemical Physics 88, 2547 (1988).
  1. M. Franchini, P.H.T. Philipsen, L. Visscher, The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite, Journal of Computational Chemistry 34, 1818 (2013).
  1. M. Franchini, P.H.T. Philipsen, E. van Lenthe, L. Visscher, Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting, Journal of Chemical Theory and Computation 10, 1994 (2014).
  1. D. Koller, F. Tran, and P. Blaha, Improving the Modified Becke-Johnson Exchange Potential., Physical Review B 83, 155109 (2011).
  1. R. A.Jishi, O. B. Ta, and A. Sharif, Modeling of Lead Halide Perovskites for Photovoltaic Applications., Archive.
  1. M. Raupach and R. Tonner, A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems, The Journal of Chemical Physics 142, 194105 (2015).
  1. X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter and M. Scheffler, Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions, New J. Phys. 14 053020.
  1. J.A. Berger, P. Romaniello, R. van Leeuwen and P.L. de Boeij, Performance of the Vignale-Kohn functional in the linear response of metals, Phys. Rev. B 74, 245117.
  1. J.A. Berger, Fully Parameter-Free Calculation of Optical Spectra for Insulators, Semiconductors, and Metals from a Simple Polarization Functional, Phys. Rev. Lett. 115, 137402.
  1. Z. Qian and G. Vignale, Dynamical exchange-correlation potentials for an electron liquid, Phys. Rev. B 65, 235121.
  1. S. Conti, R. Nifosì and M.P. Tosi, The exchange - correlation potential for current-density functional theory of frequency-dependent linear response, J. Phys. Condens. Matter 9, L475.
  1. J. Heyd, G.E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118, 8207 (2003).
  1. M.A.L. Marques, M.J.T. Oliveira, and T. Burnus, Libxc: a library of exchange and correlation functionals for density functional theory, Computer Physics Communications 183, 2272 (2012)
    1. Raupach and R. Tonner, unpublished. Please contact the authors of reference 56.