Example: Mössbauer spectroscopy: Ferrocene¶
#! /bin/sh
# By default in ADF the electron density at the nuclei is calculated, no input
# key is required. The electron density at the nuclei could be used for the
# interpretation of isomer shifts in Mossbauer spectroscopy. The absolute
# electron density at a nucleus heavily depends on the accuracy of the basis set
# in the core region of this nucleus, especially if relativistic effects are
# included. Important is to use the same basis set, same exchange correlation
# functional, same numerical accuracy, if electron densities at nuclei in
# different molecules are compared. For the calculation of Mossbauer quadrupole
# splittings the key QTENS is required For 57 Fe quadrupole splittings will be
# written in units of mm/s, used in Mossbauer spectroscopy Example shows a
# calculation on ferrocene with anon-relativistic, and two with a scalar
# relativistic ZORA Hamiltonian using a different all electron basis set.
# First a non-relativistic calculation.
$ADFBIN/adf <<eor
title ferrocene
Atoms
FE 0.000000 0.000000 0.000000
C 1.215650 0.000000 1.600813
C 0.375656 -1.156152 1.600813
C -0.983481 -0.714541 1.600813
C -0.983481 0.714541 1.600813
C 0.375656 1.156152 1.600813
C 1.215650 0.000000 -1.600813
C 0.375656 1.156152 -1.600813
C -0.983481 0.714541 -1.600813
C -0.983481 -0.714541 -1.600813
C 0.375656 -1.156152 -1.600813
H 2.310827 0.000000 1.629796
H 0.714085 -2.197727 1.629796
H -1.869498 -1.358270 1.629796
H -1.869498 1.358270 1.629796
H 0.714085 2.197727 1.629796
H 2.310827 0.000000 -1.629796
H 0.714085 2.197727 -1.629796
H -1.869498 1.358270 -1.629796
H -1.869498 -1.358270 -1.629796
H 0.714085 -2.197727 -1.629796
End
xc
gga blyp
end
Basis
Type TZP
Core none
End
qtens
NumericalQuality Good
exactdensity
eor
# Next the scalar relativistic ZORA calculations. ADF will also calculate the
# quadrupole splittings including the small component density, also called SR
# ZORA-4.
$ADFBIN/adf <<eor
title ferrocene
Atoms
FE 0.000000 0.000000 0.000000
C 1.215650 0.000000 1.600813
C 0.375656 -1.156152 1.600813
C -0.983481 -0.714541 1.600813
C -0.983481 0.714541 1.600813
C 0.375656 1.156152 1.600813
C 1.215650 0.000000 -1.600813
C 0.375656 1.156152 -1.600813
C -0.983481 0.714541 -1.600813
C -0.983481 -0.714541 -1.600813
C 0.375656 -1.156152 -1.600813
H 2.310827 0.000000 1.629796
H 0.714085 -2.197727 1.629796
H -1.869498 -1.358270 1.629796
H -1.869498 1.358270 1.629796
H 0.714085 2.197727 1.629796
H 2.310827 0.000000 -1.629796
H 0.714085 2.197727 -1.629796
H -1.869498 1.358270 -1.629796
H -1.869498 -1.358270 -1.629796
H 0.714085 -2.197727 -1.629796
End
xc
gga blyp
end
Basis
Type TZP
Core none
End
qtens
relativistic scalar zora
NumericalQuality Good
exactdensity
eor
# Next a scalar relativistic calculation is performed with a much larger basis
# set (QZ4P) in the core region. Changing the basis set will have a large effect
# on the electron density at the nucleus and a noticeable effect on the
# calculated quadrupole splittings.
$ADFBIN/adf <<eor
title ferrocene
Atoms
FE 0.000000 0.000000 0.000000
C 1.215650 0.000000 1.600813
C 0.375656 -1.156152 1.600813
C -0.983481 -0.714541 1.600813
C -0.983481 0.714541 1.600813
C 0.375656 1.156152 1.600813
C 1.215650 0.000000 -1.600813
C 0.375656 1.156152 -1.600813
C -0.983481 0.714541 -1.600813
C -0.983481 -0.714541 -1.600813
C 0.375656 -1.156152 -1.600813
H 2.310827 0.000000 1.629796
H 0.714085 -2.197727 1.629796
H -1.869498 -1.358270 1.629796
H -1.869498 1.358270 1.629796
H 0.714085 2.197727 1.629796
H 2.310827 0.000000 -1.629796
H 0.714085 2.197727 -1.629796
H -1.869498 1.358270 -1.629796
H -1.869498 -1.358270 -1.629796
H 0.714085 -2.197727 -1.629796
End
xc
gga blyp
end
Basis
Type QZ4P
Core none
End
qtens
relativistic scalar zora
NumericalQuality Good
exactdensity
eor