PES point properties

No matter what application the AMS driver is used for, in one way or another it always explores the potential energy surface (PES) of the system. One can furthermore ask AMS to calculate additional properties of the PES in the points that are visited. These are mostly derivatives of the energy, e.g. we can ask AMS to calculate the gradients or the Hessian in the visited points. In general all these PES point properties are requested through the Properties block in the AMS input:

Properties
   Gradients [True | False]
   StressTensor [True | False]
   Hessian [True | False]
   SelectedAtomsForHessian integer_list
   NormalModes [True | False]
   ElasticTensor [True | False]
   Phonons [True | False]
End

This page in the AMS manual describes all the supported properties.

Note that because these properties are tied to a particular point on the potential energy surface, they are found on the engine output files. Note also that the properties are not always calculated in every PES point that the AMS driver visits during a calculation. By default they are only calculated in special PES points, where the definition of special depends on the task AMS is performing: For a geometry optimization properties would for example only be calculated at the final, converged geometry. This behaviour can often be modified by keywords special to the particular running task.

Nuclear gradients and stress tensor

The first derivative with respect to the nuclear coordinates can be requested as follows:

Properties
   Gradients [True | False]
End
Properties
Gradients
Type:Bool
Default value:False
Description:Whether or not to calculate the gradients.

Note that these are gradients, not forces, the difference being the sign. The gradients are printed in the output and written to the engine result file belonging to the particular point on the PES in the AMSResults%Gradients variable as a \(3 \times n_\mathrm{atoms}\) array in atomic units (Hartree/Bohr).

For periodic systems (chains, slabs, bulk) one can also request the clamped-ion stress tensor (note: the clamped-ion stress is only part of the true stress tensor):

Properties
   StressTensor [True | False]
End
Properties
StressTensor
Type:Bool
Default value:False
Description:Whether or not to calculate the stress tensor.

The clamped-ion stress tensor \(\sigma_\alpha\) (Voigt notation) is computed via numerical differentiation of the energy \(E\) WRT a strain deformations \(\epsilon_\alpha\) keeping the atomic fractional coordinates constant:

\[\sigma_\alpha= \frac{1}{V_0} \left. \frac{\partial E}{\partial \epsilon_\alpha} \right|_\text{constant atomic fractional coordinates}\]

where \(V_0\) is the volume of the unit cell (for 2D periodic system \(V_0\) is the area of the unit cell, and for 1D periodic system \(V_0\) is the lenght of the unit cell).

The clamped-ion stress tensor (in Cartesian notation) is written to the engine result file in AMSResults%StressTensor.

Hessian and normal modes of vibration

The calculation of the second derivative of the total energy with respect to the nuclear coordinates is enabled by:

Properties
   Hessian [True | False]
End
Properties
Hessian
Type:Bool
Default value:False
Description:Whether or not to calculate the Hessian.

The Hessian is not printed to the text output, but is saved in the engine result file as variable AMSResults%Hessian. Note that this ist just the plain second derivative (no mass-weighting) of the total energy and that for the order of its \(3 \times n_\mathrm{atoms}\) columns/rows, the component index increases the quickest: The first column refers to changes in the \(x\)-component of atom 1, the second to the \(y\)-component, the fourth to the \(x\)-component of the second atoms, and so on.

It is also possible to request the calculation of the normal modes of vibration:

Properties
   NormalModes [True | False]
End
Properties
NormalModes
Type:Bool
Default value:False
Description:Whether or not to calculate the normal modes of vibration (and of molecules the corresponding Ir intensities.)

Note

For more information and advanced methods of calculating and analyzing molecular vibrations, see the manual chapter on the vibrational analysis (mode scanning, refinement and tracking).

This implies the calculation of the Hessian, which is required for calculating normal modes. For engines that are capable of calculating dipole moments, this also enables the calculation of the infrared intensities, so that the IR spectrum can be visualized by opening the engine result file with ADFSpectra. The normal modes of vibration and the IR intensities are saved to the engine result file in the Vibrations section.

Note

The calculation of the normal modes of vibration needs to be done the system’s equilibrium geometry. So one should either run the normal modes calculation using an already optimized geometry, or combine both steps into one job by using the geometry optimization task together with the Properties%NormalModes keyword.

Symmetry labels of the normal modes of molecules may be calculated if AMS uses symmetry in the calculation of normal modes (key NormalModes%UseSymmetry). If symmetry is used the nomal modes are projected against symmtric displacements for each irrep. If that is not successful the symmetric label is ‘MIX’. Symmetry is only recognized if the starting geometry has symmetry. Symmetry is only used for molecules if the molecule has a specific orientation in space, like that the z-axis is the main rotation axis. If the GUI is used one can click the Symmetrize button (the star), such that the GUI will (try to) symmetrize and reorient the molecule. There are some cases that even after such symmetrization, the orientation of the molecule is not what is needed for the symmetry to be used. If that is the case or if key NormalModes%UseSymmetry is set to ‘False’ or if there is no symmetry, then no symmetry labels will be calculated.

NormalModes
   UseSymmetry [True | False]
End
NormalModes
Type:Block
Description:Configures details of a normal modes calculation.
UseSymmetry
Type:Bool
Default value:True
Description:Whether or not to exploit the symmetry of the system in the normal modes calculation.

Thermodynamics (ideal gas)

The following thermodynamic properties are calculated by default whenever normal modes are computed: entropy, internal energy, constant volume heat capacity, enthalpy and Gibbs free energy. Translational, rotational and vibrational contributions are calculated for entropy, internal energy and constant volume heat capacity. Moments of Inertia and principal axis of the system are also computed. These results are written to the output file (section: “Statistical Thermal Analysis”) and to the engine binary results file (section: “Thermodynamics”).

The thermodynamic properties are computed assuming an ideal gas, and electronic contributions are ignored. The latter is a serious omission if the electronic configuration is (almost) degenerate, but the effect is small whenever the energy difference with the next state is large compared to the vibrational frequencies. The thermal analysis is based on the temperature dependent partition function. The energy of a (non-linear) molecule is (if the energy is measured from the zero-point energy)

\[\frac{E}{NkT} = \frac{3}{2} + \frac{3}{2} + \sum_j^{3N-6} \left( \frac{h \nu_j}{2kT} + \frac{h \nu_j}{kT (e^{h \nu_j /(kT)}-1)} \right) - \frac{D}{kT}\]

The summation is over all harmonic \(\nu_j\), \(h\) is Planck’s constant and \(D\) is the dissociation energy

\[D = D_0 + \sum_j \frac{h \nu_j}{2}\]

Contributions from low (less than 20 1/cm) frequencies to entropy, heat capacity and internal energy are excluded from the total values, but they are listed separately (so the user can add them if they wish).

Thermo
   Pressure float
   TMax float
   TMin float
   nSteps integer
End
Thermo
Type:Block
Description:Options for thermodynamic properties (assuming an ideal gas). The properties are computed for ‘nSteps’ temperatures in the range [TMin,TMax].
Pressure
Type:Float
Default value:1.0
Unit:atm
Description:The pressure at which the thermodynamic properties are computed.
TMax
Type:Float
Default value:298.15
Unit:Kelvin
Description:Maximum value for the temperature range.
TMin
Type:Float
Default value:298.15
Unit:Kelvin
Description:Minimum value for the temperature range.
nSteps
Type:Integer
Default value:1
Description:The number of temperatures in the range [TMin,TMax].

Partial Vibrational Spectra (PVDOS)

The Partial Vibrational Spectra (also known as PVDOS) is computed by default whenever normal modes are requested. The PVDOS \(P_{I,n}\) for atom \(I\) and normal mode \(n\) is defined as:

\[P_{I,n} = \frac{m_I |\vec{\eta}_{I,n}|^2} {\sum_{p} m_I |\vec{\eta}_{I,p}|^2}\]

where \(m_I\) is the nuclear weight of atom \(I\), and \(\vec{\eta}_{I,n}\) is the diplacement vector for atom \(I\) in normal normal mode \(n\).

Tip

The Partial Vibrational Spectra (PVDOS) can be visualized using the ADFSpectra GUI module (Vibrations → Partial Vibrational Spectra (PVDOS)). When plotting a partial vibrational spectrum, the IR intensity of normal modes is scaled by the corresponding PVDOS of the selected atoms.

_images/pvdos.png

Fig. 1 Example of partial vibrational spectrum (PVDOS). The dotted line is the full IR spectrum of 1-propanol. The solid line is the PVDOS-scaled IR spectrum of the OH group (IR spectrum computed using GFN1-xTB).

The PVDOS matrix is not printed to the text output, but only saved to the engine binary output (.rkf) in the variable Vibrations%PVDOS.

Elastic tensor

The elastic tensor \(c_{\alpha, \beta}\) (Voigt notation) is computed via second order numerical differentiation of the energy \(E\) WRT strain deformations \(\epsilon_\alpha\) and \(\epsilon_\beta\):

\[c_{\alpha, \beta} = \frac{1}{V_0} \frac{\partial^2 E}{\partial \epsilon_\alpha \partial \epsilon_\beta}\]

where \(V_0\) is the volume of the unit cell (for 2D periodic system \(V_0\) is the area of the unit cell, and for 1D periodic system \(V_0\) is the lenght of the unit cell).

For each strain deformation \(\epsilon_\alpha \epsilon_\beta\), the atomic positions will be optimized. The elastic tensor can be computed for any periodicity, i.e. 1D, 2D and 3D.

To compute the elastic tensor, request it in the Properties input block of AMS:

Properties
   ElasticTensor [True | False]
End

Note

The elastic tensor should be computed at the fully optimized geometry. One should therefore perform a geometry optimization of all degrees of freedom, including the lattice vectors. It is recommended to use a tight gradient convergence threshold for the geometry optimization (e.g. 1.0E-4). Note that all this can be done in one job by combining the geometry optimization task with the elastic tensor calculation.

The elastic tensor (in Voigt notation) is printed to the output file and stored in the engine result file in the AMSResults section (for 3D system, the elastic tensor in Voigt notation is a 6x6 matrix; for 2D systems is a 3x3 matrix; for 1D systems is just one number).

Options for the numerical differentiation procedure can be specified in the ElasticTensor input block:

ElasticTensor
   MaxGradientForGeoOpt float
   Parallel
      nCoresPerGroup integer
      nGroups integer
      nNodesPerGroup integer
   End
   StrainStepSize float
End
ElasticTensor
Type:Block
Description:Options for numerical evaluation of the elastic tensor.
MaxGradientForGeoOpt
Type:Float
Default value:0.0001
Unit:Hartree/Angstrom
Description:Maximum nuclear gradient for the relaxation of the internal degrees of freedom of strained systems.
Parallel
Type:Block
Description:The evaluation of the elastic tensor via numerical differentiation is an embarrassingly parallel problem. Double parallelization allows to split the available processor cores into groups working through all the available tasks in parallel, resulting in a better parallel performance. The keys in this block determine how to split the available processor cores into groups working in parallel.
nCoresPerGroup
Type:Integer
Description:Number of cores in each working group.
nGroups
Type:Integer
Description:Total number of processor groups. This is the number of tasks that will be executed in parallel.
nNodesPerGroup
Type:Integer
Description:Number of nodes in each group. This option should only be used on homogeneous compute clusters, where all used compute nodes have the same number of processor cores.
StrainStepSize
Type:Float
Default value:0.001
Description:Step size (relative) of strain deformations used for computing the elastic tensor numerically.

Phonons

Collective oscillations of atoms around theirs equilibrium positions, giving rise to lattice vibrations, are called phonons. AMS can calculate phonon dispersion curves within standard harmonic theory, implemented with a finite difference method. Within the harmonic approximation we can calculate the partition function and therefore thermodynamic properties, such as the specific heat and the free energy.

The calculation of phonons is enabled in the Properties block.

Properties
   Phonons [True | False]
End

Note

Phonon calculations should be performed on optimized geometries, including the lattice vectors. This can be done by either reading an already optimized system as input, or combining the phonon calculation with the geometry optimization task.

The details of the phonon calculations are configured in the NumericalPhonons block:

NumericalPhonons
   SuperCell # Non-standard block. See details.
      ...
   End
   StepSize float
   DoubleSided [True | False]
   UseSymmetry [True | False]
   Interpolation integer
   NDosEnergies integer
   Parallel
      nCoresPerGroup integer
      nGroups integer
      nNodesPerGroup integer
   End
End
NumericalPhonons
SuperCell
Type:Non-standard block
Description:Used for the phonon run. The super lattice is expressed in the lattice vectors. Most people will find a diagonal matrix easiest to understand.

The most important setting here is the super cell transformation. In principle this should be as large as possible, as the phonon bandstructure converges with the size of the super cell. In practice one may want to start with a 2x2x2 cell and increase the size of the super cell until the phonon band structure converges:

NumericalPhonons
   SuperCell
      2 0 0
      0 2 0
      0 0 2
   End
End

Other keywords in the NumericalPhonons block modify the details of the numerical differentiation procedure and the accuracy of the results:

NumericalPhonons
StepSize
Type:Float
Default value:0.04
Unit:Angstrom
Description:Step size to be taken to obtain the force constants (second derivative) from the analytical gradients numerically.
DoubleSided
Type:Bool
Default value:True
Description:By default a two-sided (or quadratic) numerical differentiation of the nuclear gradients is used. Using a single-sided (or linear) numerical differentiation is computationally faster but much less accurate. Note: In older versions of the program only the single-sided option was available.
UseSymmetry
Type:Bool
Default value:True
Description:Whether or not to exploit the symmetry of the system in the phonon calculation.
Interpolation
Type:Integer
Default value:100
Description:Use interpolation to generate smooth phonon plots.
NDosEnergies
Type:Integer
Default value:1000
Description:Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic properties. For fast compute engines this may become time limiting and smaller values can be tried.

Note that the numerical phonon calculation supports AMS’ double parallelism, which can perform the calculations for the individual displacements in parallel. This is disabled by default but can be enabled using the keys in the NumericalPhonons%Parallel block:

NumericalPhonons
Parallel
Type:Block
Description:Computing the phonons via numerical differentiation is an embarrassingly parallel problem. Double parallelization allows to split the available processor cores into groups working through all the available tasks in parallel, resulting in a better parallel performance. The keys in this block determine how to split the available processor cores into groups working in parallel. Keep in mind that the displacements for a phonon calculation are done on a super-cell system, so that every task requires more memory than the central point calculated using the primitive cell.
nCoresPerGroup
Type:Integer
Description:Number of cores in each working group.
nGroups
Type:Integer
Description:Total number of processor groups. This is the number of tasks that will be executed in parallel.
nNodesPerGroup
Type:Integer
Description:Number of nodes in each group. This option should only be used on homogeneous compute clusters, where all used compute nodes have the same number of processor cores.

Numerical differentiation options

The following options apply whenever AMS computes gradients, hessians or stress tensors via numerical differentiation.

NumericalDifferentiation
   NuclearStepSize float
   Parallel
      nCoresPerGroup integer
      nGroups integer
      nNodesPerGroup integer
   End
   StrainStepSize float
   UseSymmetry [True | False]
End
NumericalDifferentiation
Type:Block
Description:Define options for numerical differentiations, that is the numerical calculation of gradients, Hessian and the stress tensor for periodic systems.
NuclearStepSize
Type:Float
Default value:0.005
Unit:Bohr
Description:Step size for numerical nuclear gradient calculation.
Parallel
Type:Block
Description:Numerical differentiation is an embarrassingly parallel problem. Double parallelization allows to split the available processor cores into groups working through all the available tasks in parallel, resulting in a better parallel performance. The keys in this block determine how to split the available processor cores into groups working in parallel.
nCoresPerGroup
Type:Integer
Description:Number of cores in each working group.
nGroups
Type:Integer
Description:Total number of processor groups. This is the number of tasks that will be executed in parallel.
nNodesPerGroup
Type:Integer
Description:Number of nodes in each group. This option should only be used on homogeneous compute clusters, where all used compute nodes have the same number of processor cores.
StrainStepSize
Type:Float
Default value:0.001
Description:Step size (relative) for numerical stress tensor calculation.
UseSymmetry
Type:Bool
Default value:True
Description:Whether or not to exploit the symmetry of the system for numerical differentiations.

Note that the numerical differentiation calculation supports AMS’ double parallelism, which can perform the calculations for the individual displacements in parallel. This is disabled by default but can be enabled using the keys in the NumericalDifferentiation%Parallel block.

AMS may use symmetry (key NumericalDifferentiation%UseSymmetry) in case of numerical differentiation calculations. If symmetry is used only symmetry unique atoms are displaced. Symmetry is only recognized if the starting geometry has symmetry. Symmetry is only used for molecules if the molecule has a specific orientation in space, like that the z-axis is the main rotation axis. If the GUI is used one can click the Symmetrize button (the star), such that the GUI will (try to) symmetrize and reorient the molecule. There are some cases that even after such symmetrization, the orientation of the molecule is not what is needed for the symmetry to be used in case of numerical differentiation calculations. If that is the case or if key NumericalDifferentiation%UseSymmetry is set to ‘False’, then no symmetry will be used.