Example: pKa prediction (PLAMS)¶
This example should be executed using PLAMS.
from scm.plams.interfaces.molecule.rdkit import from_smiles
import numpy as np
import multiprocessing
# In this example we compute pKa (acid dissociation constant) using MOPAC for a set of
# molecules. The molecules are defined using smiles strings, and are converted to xyz
# structures using the plams-rdkit interface.
# Important note: the predicted pKa strongly depend on the molecule's conformer.
# Here we use the lowest conformer predicted by rdkit's UFF.
# The difference between the values computed here and the results on the
# MOPAC website (ref_mopac_pKa) is due to different conformers
# Data taken from the online MOPAC manual: http://openmopac.net/manual/ (only a sub set)
data_tmp = [
# Molecule name smiles exp_pKa ref_mopac_pKa (from mopac's website)
['1-Naphthoic_acid', 'C1=CC=C2C(=C1)C=CC=C2C(=O)O', 3.69, 4.35],
['2,2,2-Trichloroethanol', 'C(C(Cl)(Cl)Cl)O', 12.02, 12.22],
['2,2,2-Trifluoroethanol', 'C(C(F)(F)F)O', 12.40, 12.27],
['2,2-Dimethylpropionic_acid', 'CC(C)(C)C(=O)O', 5.03, 5.23],
['2,3,4,6-Tetrachlorophenol', 'C1=C(C(=C(C(=C1Cl)Cl)Cl)O)Cl', 7.10, 6.08],
['Acetic_acid', 'CC(=O)O', 4.76, 5.00],
['Acrylic_acid', 'C=CC(=O)O', 4.25, 4.65],
['Benzoid_acid', 'C1=CC=C(C=C1)C(=O)O', 4.20, 4.30],
['Citric_acid', 'C(C(=O)O)C(CC(=O)O)(C(=O)O)O', 3.13, 2.56],
['Ethanol', 'CCO', 16.00, 16.37],
['Formic_acid', 'C(=O)O', 3.77, 3.77],
['Glycine', 'C(C(=O)O)N', 2.35, 2.53],
['Isoleucine', 'CCC(C)C(C(=O)O)N', 2.32, 2.48],
['Methanol', 'CO', 15.54, 15.23],
['o-Nitrophenol', 'C1=CC=C(C(=C1)[N+](=O)[O-])O', 7.17, 7.52],
['Pentachlorophenol', 'C1(=C(C(=C(C(=C1Cl)Cl)Cl)Cl)Cl)O', 4.90, 5.55],
['Phenol', 'C1=CC=C(C=C1)O', 10.00, 9.71],
['Pyruvic_acid', 'CC(=O)C(=O)O', 2.50, 2.85],
['T-Butanol', 'CC(C)(C)O', 17.00, 16.25],
['Terephthalic_acid', 'C1=CC(=CC=C1C(=O)O)C(=O)O', 3.51, 3.59],
['Valine', 'CC(C)C(C(=O)O)N', 2.29, 2.61],
['Water', 'O', 15.74, 15.75]]
# Turn data_tmp into a dictionary:
systems = [{'name':d[0], 'smiles':d[1], 'exp_pKa':d[2], 'ref_mopac_pKa':d[3]} for d in data_tmp]
# Create the molecules from the smiles using rdkit:
molecules = []
for system in systems:
# Compute 30 conformers, optimize with UFF and pick the lowest in energy.
mol = from_smiles(system['smiles'], nconfs=30, forcefield='uff')[0]
mol.properties.name = system['name']
mol.properties.exp_pKa = system['exp_pKa']
mol.properties.ref_mopac_pKa = system['ref_mopac_pKa']
molecules.append(mol)
# MOPAC input:
s = Settings()
s.runscript.nproc = 1 # serial calculation
s.input.ams.Task = 'GeometryOptimization'
s.input.mopac.model = 'PM6'
s.input.mopac.properties.pKa = 'Yes'
# Set up and run jobs:
jobs = MultiJob(children=[AMSJob(name=mol.properties.name, molecule=mol, settings=s) for mol in molecules])
jr = JobRunner(parallel=True, maxjobs=multiprocessing.cpu_count()) # run jobs in parallel
jobs.run(jobrunner=jr)
# Collect results:
for i, mol in enumerate(molecules):
pKaValues = jobs.children[i].results.readrkf('Properties', 'pKaValues', file='mopac')
mol.properties.calc_pKa = np.mean(pKaValues) # If there is more than one pKa, take the average value
# Print results in a table:
print("Results:\n")
print("| {:28} | {:8} | {:8} | {:8} | {:8} |".format("Molecule", "exp pKa", "calc pKa", "ref", 'calc-exp'))
for mol in molecules:
print("| {:28} | {:>8.2f} | {:>8.4f} | {:>8.2f} | {:>8.2f} |".format(mol.properties.name, mol.properties.exp_pKa, mol.properties.calc_pKa, mol.properties.ref_mopac_pKa, mol.properties.calc_pKa-mol.properties.exp_pKa))
print("")
errors = [mol.properties.calc_pKa - mol.properties.exp_pKa for mol in molecules]
print("Mean signed error : {:4.2f}".format(np.mean(errors)))
print("Mean unsigned error: {:4.2f}".format(np.mean([abs(e) for e in errors])))
print("Root mean square error: {:4.2f}".format(np.sqrt(np.mean([e**2 for e in errors]))))
print("Done")