Example: Spin-Orbit SFO analysis: TlH¶
#! /bin/sh
# Application of the Spin-Orbit relativistic option (using double-group
# symmetry) to TlH with a detailed analysis of the spinors in terms of SFOs
# (Symmetrized Fragment Orbitals).
# In order to get the population analysis, one should have one scalar
# relativistic fragment, which is the whole molecule. The SFOs in this case are
# the scalar relativistic orbitals, which are already orthonormal, because one
# has only one fragment which is the whole molecule.
AMS_JOBNAME=Scalar $AMSBIN/ams <<eor
System
atoms
Tl 0.0 0.0 0.0
H 0.0 0.0 1.870
end
end
Task SinglePoint
Engine ADF
title TlH, scalar relativistic zora
beckegrid
quality good
end
eprint
sfo eig ovl
end
basis
core None
type TZ2P
CreateOutput Yes
end
print SFO
relativity
level scalar
formalism ZORA
end
xc
gga BP86
end
EndEngine
eor
# In order to get the population analysis, one should have one scalar
# relativistic fragment, which is the whole molecule, which is TlH in this case.
AMS_JOBNAME=SpinOrbit $AMSBIN/ams <<eor
System
atoms
Tl 0.0 0.0 0.0 adf.f=TlH
H 0.0 0.0 1.870 adf.f=TlH
end
end
Task SinglePoint
Engine ADF
title TlH from fragment TlH, with SpinOrbit coupling
beckegrid
quality good
end
eprint
sfo eig ovl
end
fragments
TlH Scalar.results/adf.rkf
end
print SFO
relativity
level spin-orbit
formalism ZORA
end
xc
gga BP86
end
EndEngine
eor
# The output gives something like:
# ================================================================================
#
# =======================
# Double group symmetry : * J1/2 *
# =======================
# === J1/2:1 ===
# Spinors expanded in SFOs
# Spinor: 21 22 23 24
# occup: 1.00 1.00 1.00 0.00
# ------ ---- ---- ---- ----
# SFO SIGMA
# 13.alpha: 0.7614+0.0000i 0.0096+0.0000i 0.0052+0.0000i -0.0006+0.0000i
# 14.alpha: 0.0154+0.0000i -0.9996+0.0000i 0.0208+0.0000i -0.0077+0.0000i
# 15.alpha: -0.0146+0.0000i 0.0185+0.0000i 0.9849+0.0000i 0.1625+0.0000i
# SFO PI:x
# 8.beta : 0.4578+0.0000i 0.0091+0.0000i 0.0112+0.0000i 0.0030+0.0000i
# 9.beta : 0.0005+0.0000i -0.0074+0.0000i -0.1119+0.0000i 0.6910+0.0000i
# SFO PI:y
# 8.beta : 0.0000+0.4578i 0.0000+0.0091i 0.0000+0.0112i 0.0000+0.0030i
# 9.beta : 0.0000+0.0005i 0.0000-0.0074i 0.0000-0.1119i 0.0000+0.6910i
#
# ================================================================================
# Left out are a lot of small numbers. The meaning is that a spinor of J_z=1/2
# symmetry can have SIGMA and PI character, for example, the 21st spinor with
# occupation number 1.0, is approximately (21 J_z=1/2) = 0.76 (13 SIGMA alpha) +
# 0.46 (8 PI:x beta) + i 0.46 (8 PI:y beta)
# Next in the SFO contributions per spinor the real and imaginary spin alpha
# part and real and imaginary spin beta part are all summed together to give a
# percentage of a certain SFO. are summed. For example the 21st spinor has
# almost 60% (13 SIGMA) character.
# ======================================
#
# SFO contributions (%) per spinor
# Spinor: 21 22 23 24
# occup: 1.00 1.00 1.00 0.00
# ------ ---- ---- ---- ----
# SFO SIGMA
# 13: 57.97 0.01 0.00 0.00
# 14: 0.02 99.92 0.04 0.01
# 15: 0.02 0.03 97.01 2.64
# SFO PI:x
# 8: 20.96 0.01 0.01 0.00
# 9: 0.00 0.01 1.25 47.75
# SFO PI:y
# 8: 20.96 0.01 0.01 0.00
# 9: 0.00 0.01 1.25 47.75
#
# ======================================