Example: Spin-Orbit SFO analysis: TlH

Download TlH_SO_analysis.run

#! /bin/sh


# Application of the Spin-Orbit relativistic option (using double-group
# symmetry) to TlH with a detailed analysis of the spinors in terms of SFOs
# (Symmetrized Fragment Orbitals).

# In order to get the population analysis, one should have one scalar
# relativistic fragment, which is the whole molecule. The SFOs in this case are
# the scalar relativistic orbitals, which are already orthonormal, because one
# has only one fragment which is the whole molecule.

AMS_JOBNAME=Scalar $AMSBIN/ams <<eor
System
  atoms
     Tl       0.0             0.0             0.0
     H        0.0             0.0             1.870
  end
end

Task SinglePoint

Engine ADF
  title TlH, scalar relativistic zora
  beckegrid
    quality good
  end
  eprint
    sfo eig ovl
  end
  basis
    core None
    type TZ2P
    CreateOutput Yes
  end
  print SFO
  relativity
    level scalar
    formalism ZORA
  end
  xc
    gga BP86
  end
EndEngine

eor

# In order to get the population analysis, one should have one scalar
# relativistic fragment, which is the whole molecule, which is TlH in this case.

AMS_JOBNAME=SpinOrbit $AMSBIN/ams <<eor
System
  atoms
     Tl       0.0             0.0             0.0    adf.f=TlH
     H        0.0             0.0             1.870  adf.f=TlH
  end
end

Task SinglePoint

Engine ADF
  title TlH from fragment TlH,  with SpinOrbit coupling
  beckegrid
    quality good
  end
  eprint
    sfo eig ovl
  end
  fragments
     TlH Scalar.results/adf.rkf
  end
  print SFO
  relativity
    level spin-orbit
    formalism ZORA
  end
  xc
    gga BP86
  end
EndEngine

eor

# The output gives something like:
# ================================================================================
# 
#  =======================
#  Double group symmetry :  *   J1/2  *
#  =======================
#                                        ===  J1/2:1 ===
#  Spinors expanded in SFOs
# Spinor:             21               22               23               24
#  occup:            1.00             1.00             1.00             0.00
#  ------            ----             ----             ----             ----
#  SFO SIGMA
#    13.alpha:   0.7614+0.0000i   0.0096+0.0000i   0.0052+0.0000i  -0.0006+0.0000i
#    14.alpha:   0.0154+0.0000i  -0.9996+0.0000i   0.0208+0.0000i  -0.0077+0.0000i
#    15.alpha:  -0.0146+0.0000i   0.0185+0.0000i   0.9849+0.0000i   0.1625+0.0000i
#  SFO PI:x
#     8.beta :   0.4578+0.0000i   0.0091+0.0000i   0.0112+0.0000i   0.0030+0.0000i
#     9.beta :   0.0005+0.0000i  -0.0074+0.0000i  -0.1119+0.0000i   0.6910+0.0000i
#  SFO PI:y
#     8.beta :   0.0000+0.4578i   0.0000+0.0091i   0.0000+0.0112i   0.0000+0.0030i
#     9.beta :   0.0000+0.0005i   0.0000-0.0074i   0.0000-0.1119i   0.0000+0.6910i
#
# ================================================================================

# Left out are a lot of small numbers. The meaning is that a spinor of J_z=1/2
# symmetry can have SIGMA and PI character, for example, the 21st spinor with
# occupation number 1.0, is approximately (21 J_z=1/2) = 0.76 (13 SIGMA alpha) +
# 0.46 (8 PI:x beta) + i 0.46 (8 PI:y beta)

# Next in the SFO contributions per spinor the real and imaginary spin alpha
# part and real and imaginary spin beta part are all summed together to give a
# percentage of a certain SFO. are summed. For example the 21st spinor has
# almost 60% (13 SIGMA) character.

# ======================================
#
# SFO contributions (%) per spinor
# Spinor:      21     22     23     24

# occup:      1.00   1.00   1.00   0.00
# ------      ----   ----   ----   ----

# SFO SIGMA
#     13:    57.97   0.01   0.00   0.00
#     14:     0.02  99.92   0.04   0.01
#     15:     0.02   0.03  97.01   2.64
# SFO PI:x
#      8:    20.96   0.01   0.01   0.00
#      9:     0.00   0.01   1.25  47.75
# SFO PI:y
#      8:    20.96   0.01   0.01   0.00
#      9:     0.00   0.01   1.25  47.75
#
# ======================================