7.5. ParAMSResults¶
Important
You should not initialize ParAMSResults yourself. Instead, use the
corresponding ParAMSJob’s results
attribute to
access the results.
To get started, see the tutorial Getting Started: Python.
-
class
ParAMSResults
(*args, **kwargs)¶ Use this class to access results from a finished ParAMS job (the job may have been run either with the GUI or using the
ParAMSJob
Python class).You should not create an instance of this class yourself. Instead, create a ParAMSJob, which will have a
results
attribute of typeParAMSResults
.Example:
job = ParAMSJob.load_external("/path/to/jobname.results") print(type(job.results)) # job.results is of type ParAMSResults print(job.results.get_loss()) # print the best loss function value for the training set print(job.results.path) # "/path/to/jobname.results"
-
__init__
(*args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
get_loss
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → float¶ Get the loss function value. Works for tasks ‘optimization’ and ‘singlepoint’.
- source: str
‘best’, ‘latest’, ‘validation_set_best_parameters’, etc. Ignored if the task is ‘singlepoint’.
- data_set: str
‘training_set’ or ‘validation_set’. Will read results from the directory
training_set_results
etc.- optimizer: int or None
If integer, read from the corresponding optimizer_XXX directory. If None, read from the “overall” (global) results. Ignored if the task is ‘singlepoint’.
- Returns: float
The loss function value (loss.txt)
-
get_evaluation_number
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → int¶ Get the (global) evaluation number.
Returns: int
The other arguments are described for
ParAMSResults.get_loss()
-
get_running_loss
(data_set: str = 'training_set', optimizer: int = None) → tuple¶ Get the running loss from running_loss.txt.
- data_setstr
‘training_set’ or ‘validation_set’
- optimizer: int or None
If an integer, only get the running loss for that optimizer. Otherwise, get the loss for all optimizers.
Returns: 2-tuple (evaluation_id, loss) where each item is a list of length N
-
get_running_active_parameters
(data_set: str = 'training_set', optimizer: int = None) → tuple¶ Get the running active parameters from running_active_parameters.txt.
- data_setstr
‘training_set’ or ‘validation_set’
- optimizer: int or None
If an integer, only get the running active parameters for that optimizer. Otherwise, get the parameters for all optimizers.
Returns: 2-tuple (evaluation_id, parameters) where evaluation_id is a list of float, and parameters is a dict where the keys are the parameter names and the values are a list of float (of the same length as evaluation_id)
-
get_parameter_interface_path
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → scm.params.parameterinterfaces.base.BaseParameters¶ Returns: the path to a parameter interface (ReaxFFParameters, GFN1xTBParameters, …) yaml file.
The arguments are described for
ParAMSResults.get_loss()
-
get_parameter_interface
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → scm.params.parameterinterfaces.base.BaseParameters¶ Returns: a parameter interface (ReaxFFParameters, GFN1xTBParameters, …) from a parameter_interface.yaml file.
The arguments are described for
ParAMSResults.get_loss()
-
get_ffield
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → str¶ - Returnsstr
Path to the ffield.ff file from ReaxFF optimizations
The arguments are described for
ParAMSResults.get_loss()
-
get_xtb_files
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → str¶ - Returnsstr
Path to the xtb_files directory from GFN1-xTB optimizations
The arguments are described for
ParAMSResults.get_loss()
-
get_deployed_model_path
() → str¶ - Returnsstr
Path to the deployed.pth file from a NequIP training.
-
get_data_set
(data_set: str = 'training_set') → scm.params.core.dataset.DataSet¶ Returns a DataSet based on settings_and_initial_data/data_sets/data_set.yaml.gz
-
get_training_set_path
() → str¶ Returns the absolute path to settings_and_initial_data/data_sets/training_set.yaml.gz
-
get_training_set
() → scm.params.core.dataset.DataSet¶ Returns a DataSet based on settings_and_initial_data/data_sets/training_set.yaml.gz
-
get_validation_set_path
() → str¶ Returns the absolute path to settings_and_initial_data/data_sets/validation_set.yaml.gz
-
get_validation_set
() → scm.params.core.dataset.DataSet¶ Returns a DataSet based on settings_and_initial_data/data_sets/validation_set.yaml.gz
-
get_training_set_ref_path
() → str¶ Returns the absolute path to training_set.ref.yaml from a task GenerateReference job
-
get_training_set_ref
() → scm.params.core.dataset.DataSet¶ Returns a DataSet containing the newly calculated reference values from a task GenerateReference job
-
get_reference_jobs_dir
() → str¶ Returns the absolute path to the directory containing the reference jobs from a task GenerateReference job
-
get_job_collection_path
() → scm.params.core.jobcollection.JobCollection¶ Returns the path to settings_and_initial_data/job_collection.yaml.gz
-
get_job_collection
() → scm.params.core.jobcollection.JobCollection¶ Returns a JobCollection based on settings_and_initial_data/job_collection.yaml.gz
-
get_initial_parameter_interface
() → scm.params.parameterinterfaces.base.BaseParameters¶ Returns a parameter interface (ReaxFFParameters, GFN1xTBParameters, …) from settings_and_initial_data/initial_parameter_interface.yaml
Note: This function will always return the initial parameter interface. For task ‘optimization’, if you performed an evaluation with the initial parameters you could also call
get_parameter_interface(source='initial')
.
-
get_engine_collection_path
() → str¶ Returns the path to settings_and_initial_data/job_collection_engines.yaml.gz
NOTE: This file does not always exist.
-
get_engine_collection
() → scm.params.core.engines.EngineCollection¶ Returns an engine collection based on settings_and_initial_data/job_collection_engines.yaml.gz
-
get_inputfile
() → str¶ Returns the path to the settings_and_initial_data/params.in file.
-
get_data_set_evaluator
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None) → scm.params.common.dataset_evaluator.DataSetEvaluator¶ Returns: a
DataSetEvaluator
from a data_set_predictions.yaml file.The arguments are described for
ParAMSResults.get_loss()
-
get_num_optimizers
() → int¶ Returns the number of optimizers as determined by the number of files/directories starting with
optimizer_
inside the optimization/ folder
-
get_checkpoints
() → List[str]¶ Returns a list of all checkpoint files sorted by creation date
-
get_all_pes_prediction_names
(source: str = 'best', data_set: str = 'training_set', optimizer: int = None)¶ Returns a list of all files in pes_predictions/, excluding the .txt suffix.
-
get_pes_prediction
(name, source: str = 'best', data_set: str = 'training_set', optimizer: int = None)¶ - name: str
The name. Example: if there’s a file in
pes_predictions/my_pesscan.txt
, then setname='my_pesscan'
.
The other arguments are described for
ParAMSResults.get_loss()
.- Returns: 5-tuple
x_headers (list of str), x_values (list of list of float), ref_values (list of float), pred_values (list of float), ref_and_pred_unit (str)
E.g. x_headers[0] would be a description of the first scan direction of the first scan coordinate, and x_values[0] would be the corresponding coordinate values.
-
get_sensitivities
(average_bootstraps: bool = True) → Dict[str, numpy.ndarray]¶ Normalised HSIC calculation results. If average_bootstraps is True and multiple bootstraps were calculated, this represents the mean over the bootstraps. Otherwise, a matrix of sensitivities is returned.
-
get_sensitivity
(parameter_name: str, average_bootstraps: bool = True) → numpy.ndarray¶ Return the sensitivity for a particular parameter (averaged or not over the repeated calculations).
-
get_num_bootstraps
() → int¶ Return the number of bootstraps (repeats) of the sensitivity calculation.
-
get_num_samples
() → int¶ Return the number of samples used in each sensitivity calculation.
-
get_ordered_parameters
() → List[str]¶ Return a list of parameter names, ordered from most sensitive to least sensitive.
-
get_parameter_rankings
() → Dict[str, int]¶ Return a dictionary of parameter names and their relative sensitivity ranking (1 being the most sensitive.)
-
get_suggested_weights
(data_set: str = 'training_set') → Dict[str, float]¶ Return a dictionary of data set items and suggested weights based on the results of the reweight calculation.
-