Packmol example¶
This example illustrates various ways of using the packmol interface for constructing liquid or gas mixtures or solid/liquid interfaces.
Note: This example requires AMS2023 or later.
To follow along, either
Download
PackMol.py
(run as$AMSBIN/amspython PackMol.py
).Download
PackMol.ipynb
(see also: how to install Jupyterlab in AMS)
Initial imports¶
from scm.plams import plot_molecule, from_smiles, Molecule
from scm.plams.interfaces.molecule.packmol import packmol, packmol_around
from ase.visualize.plot import plot_atoms
from ase.build import fcc111, bulk
import matplotlib.pyplot as plt
Helper functions¶
def printsummary(mol, details=None):
if details:
density = details["density"]
else:
density = mol.get_density() * 1e-3
s = f"{len(mol)} atoms, density = {density:.3f} g/cm^3"
if mol.lattice:
s += f", box = {mol.lattice[0][0]:.3f}, {mol.lattice[1][1]:.3f}, {mol.lattice[2][2]:.3f}"
s += f", formula = {mol.get_formula()}"
if details:
s += f'\n#added molecules per species: {details["n_molecules"]}, mole fractions: {details["mole_fractions"]}'
print(s)
Liquid water (fluid with 1 component)¶
First, create the gasphase molecule:
water = from_smiles("O")
plot_molecule(water);
print("pure liquid from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size")
out = packmol(water, n_atoms=194, density=1.0)
printsummary(out)
out.write("water-1.xyz")
plot_molecule(out);
pure liquid from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size
195 atoms, density = 1.000 g/cm^3, box = 12.482, 12.482, 12.482, formula = H130O65
print("pure liquid from approximate density (in g/cm^3) and an orthorhombic box")
out = packmol(water, density=1.0, box_bounds=[0.0, 0.0, 0.0, 8.0, 12.0, 14.0])
printsummary(out)
out.write("water-2.xyz")
plot_molecule(out);
pure liquid from approximate density (in g/cm^3) and an orthorhombic box
135 atoms, density = 1.002 g/cm^3, box = 8.000, 12.000, 14.000, formula = H90O45
print("pure liquid with explicit number of molecules and exact density")
out = packmol(water, n_molecules=64, density=1.0)
printsummary(out)
out.write("water-3.xyz")
plot_molecule(out);
pure liquid with explicit number of molecules and exact density
192 atoms, density = 1.000 g/cm^3, box = 12.417, 12.417, 12.417, formula = H128O64
print("pure liquid with explicit number of molecules and box")
out = packmol(water, n_molecules=64, box_bounds=[0.0, 0.0, 0.0, 12.0, 13.0, 14.0])
printsummary(out)
out.write("water-4.xyz")
plot_molecule(out);
pure liquid with explicit number of molecules and box
192 atoms, density = 0.877 g/cm^3, box = 12.000, 13.000, 14.000, formula = H128O64
print("water-5.xyz: pure liquid in non-orthorhombic box (requires AMS2025 or later)")
# Non-orthorhombic boxes use UFF MD simulations behind the scenes
# You can pack inside any lattice using the packmol_around function
box = Molecule()
box.lattice = [[10.0, 2.0, -1.0], [-5.0, 8.0, 0.0], [0.0, -2.0, 11.0]]
out = packmol_around(box, molecules=[water], n_molecules=[32])
out.write("water-5.xyz")
plot_molecule(out);
water-5.xyz: pure liquid in non-orthorhombic box (requires AMS2025 or later)
PLAMS working folder: /path/plams_workdir.006
print("Experimental feature (AMS2025): guess density for pure liquid")
print("Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!")
out = packmol(water, n_atoms=100)
print(f"Guessed density: {out.get_density():.2f} kg/m^3")
plot_molecule(out);
Experimental feature (AMS2025): guess density for pure liquid
Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!
Guessed density: 1139.23 kg/m^3
Water-acetonitrile mixture (fluid with 2 or more components)¶
Let’s also create a single acetonitrile molecule:
acetonitrile = from_smiles("CC#N")
plot_molecule(acetonitrile)
<AxesSubplot:>
Set the desired mole fractions and density. Here, the density is calculated as the weighted average of water (1.0 g/cm^3) and acetonitrile (0.76 g/cm^3) densities, but you could use any other density.
# MIXTURES
x_water = 0.666 # mole fraction
x_acetonitrile = 1 - x_water # mole fraction
# weighted average of pure component densities
density = (x_water * 1.0 + x_acetonitrile * 0.76) / (x_water + x_acetonitrile)
print("MIXTURES")
print(f"x_water = {x_water:.3f}")
print(f"x_acetonitrile = {x_acetonitrile:.3f}")
print(f"target density = {density:.3f} g/cm^3")
MIXTURES
x_water = 0.666
x_acetonitrile = 0.334
target density = 0.920 g/cm^3
By setting return_details=True
, you can get information about the
mole fractions of the returned system. They may not exactly match the
mole fractions you put in.
print(
"2-1 water-acetonitrile from approximate number of atoms and exact density (in g/cm^3), "
"cubic box with auto-determined size"
)
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
n_atoms=200,
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-1.xyz")
plot_molecule(out);
2-1 water-acetonitrile from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size
201 atoms, density = 0.920 g/cm^3, box = 13.263, 13.263, 13.263, formula = C34H117N17O33
#added molecules per species: [33, 17], mole fractions: [0.66, 0.34]
The details
is a dictionary as follows:
for k, v in details.items():
print(f"{k}: {v}")
n_molecules: [33, 17]
mole_fractions: [0.66, 0.34]
n_atoms: 201
molecule_type_indices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
molecule_indices: [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49]
atom_indices_in_molecule: [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
volume: 2333.0853879652004
density: 0.9198400000000004
print("2-1 water-acetonitrile from approximate density (in g/cm^3) and box bounds")
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
box_bounds=[0, 0, 0, 13.2, 13.2, 13.2],
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-2.xyz")
plot_molecule(out);
2-1 water-acetonitrile from approximate density (in g/cm^3) and box bounds
201 atoms, density = 0.933 g/cm^3, box = 13.200, 13.200, 13.200, formula = C34H117N17O33
#added molecules per species: [33, 17], mole fractions: [0.66, 0.34]
print("2-1 water-acetonitrile from explicit number of molecules and density, cubic box with auto-determined size")
out, details = packmol(
molecules=[water, acetonitrile],
n_molecules=[32, 16],
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-3.xyz")
plot_molecule(out);
2-1 water-acetonitrile from explicit number of molecules and density, cubic box with auto-determined size
192 atoms, density = 0.920 g/cm^3, box = 13.058, 13.058, 13.058, formula = C32H112N16O32
#added molecules per species: [32, 16], mole fractions: [0.6666666666666666, 0.3333333333333333]
print("2-1 water-acetonitrile from explicit number of molecules and box")
out = packmol(
molecules=[water, acetonitrile],
n_molecules=[32, 16],
box_bounds=[0, 0, 0, 13.2, 13.2, 13.2],
)
printsummary(out)
out.write("water-acetonitrile-4.xyz")
plot_molecule(out);
2-1 water-acetonitrile from explicit number of molecules and box
192 atoms, density = 0.890 g/cm^3, box = 13.200, 13.200, 13.200, formula = C32H112N16O32
print("Experimental feature (AMS2025): guess density for mixture")
print("Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!")
out = packmol([water, acetonitrile], mole_fractions=[x_water, x_acetonitrile], n_atoms=100)
print(f"Guessed density: {out.get_density():.2f} kg/m^3")
plot_molecule(out);
Experimental feature (AMS2025): guess density for mixture
Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!
Guessed density: 853.04 kg/m^3
Pack inside sphere¶
Set sphere=True
to pack in a sphere (non-periodic) instead of in a
periodic box. The sphere will be centered near the origin.
print("water in a sphere from exact density and number of molecules")
out, details = packmol(molecules=[water], n_molecules=[100], density=1.0, return_details=True, sphere=True)
printsummary(out, details)
print(f"Radius of sphere: {details['radius']:.3f} ang.")
print(f"Center of mass xyz (ang): {out.get_center_of_mass()}")
out.write("water-sphere.xyz")
plot_molecule(out);
water in a sphere from exact density and number of molecules
300 atoms, density = 1.000 g/cm^3, formula = H200O100
#added molecules per species: [100], mole fractions: [1.0]
Radius of sphere: 8.939 ang.
Center of mass xyz (ang): (0.35956557054572336, 0.23551764976716527, -0.8914888983730765)
print(
"2-1 water-acetonitrile in a sphere from exact density (in g/cm^3) and "
"approximate number of atoms and mole fractions"
)
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
n_atoms=500,
density=density,
return_details=True,
sphere=True,
)
printsummary(out, details)
out.write("water-acetonitrile-sphere.xyz")
plot_molecule(out);
2-1 water-acetonitrile in a sphere from exact density (in g/cm^3) and approximate number of atoms and mole fractions
501 atoms, density = 0.920 g/cm^3, formula = C84H292N42O83
#added molecules per species: [83, 42], mole fractions: [0.664, 0.336]
Packing ions, total system charge¶
The total system charge will be sum of the charges of the constituent molecules.
In PLAMS, molecule.properties.charge
specifies the charge:
ammonium = from_smiles("[NH4+]") # ammonia.properties.charge == +1
chloride = from_smiles("[Cl-]") # chloride.properties.charge == -1
print("3 water molecules, 3 ammonium, 1 chloride (non-periodic)")
print("Initial charges:")
print(f"Water: {water.properties.get('charge', 0)}")
print(f"Ammonium: {ammonium.properties.get('charge', 0)}")
print(f"Chloride: {chloride.properties.get('charge', 0)}")
out = packmol(molecules=[water, ammonium, chloride], n_molecules=[3, 3, 1], density=0.4, sphere=True)
tot_charge = out.properties.get("charge", 0)
print(f"Total charge of packmol-generated system: {tot_charge}")
out.write("water-ammonium-chloride.xyz")
plot_molecule(out);
3 water molecules, 3 ammonium, 1 chloride (non-periodic)
Initial charges:
Water: 0
Ammonium: 1
Chloride: -1
Total charge of packmol-generated system: 2
Microsolvation¶
packmol_microsolvation
can create a microsolvation sphere around a
solute.
from scm.plams import packmol_microsolvation
out = packmol_microsolvation(solute=acetonitrile, solvent=water, density=1.5, threshold=4.0)
# for microsolvation it's a good idea to have a higher density than normal to get enough solvent molecules
print(f"Microsolvated structure: {len(out)} atoms.")
out.write("acetonitrile-microsolvated.xyz")
figsize = (3, 3)
plot_molecule(out, figsize=figsize);
Microsolvated structure: 81 atoms.
Solid-liquid or solid-gas interfaces¶
First, create a slab using the ASE fcc111
function
from scm.plams import plot_molecule, fromASE
from ase.build import fcc111
rotation = "90x,0y,0z" # sideview of slab
slab = fromASE(fcc111("Al", size=(4, 6, 3), vacuum=15.0, orthogonal=True, periodic=True))
plot_molecule(slab, figsize=figsize, rotation=rotation);
print("water surrounding an Al slab, from an approximate density")
out = packmol_around(slab, water, density=1.0)
printsummary(out)
out.write("al-water-pure.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation);
water surrounding an Al slab, from an approximate density
606 atoms, density = 1.447 g/cm^3, box = 11.455, 14.881, 34.677, formula = Al72H356O178
print("2-1 water-acetonitrile mixture surrounding an Al slab, from mole fractions and an approximate density")
out = packmol_around(slab, [water, acetonitrile], mole_fractions=[x_water, x_acetonitrile], density=density)
printsummary(out)
out.write("al-water-acetonitrile.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation);
2-1 water-acetonitrile mixture surrounding an Al slab, from mole fractions and an approximate density
528 atoms, density = 1.369 g/cm^3, box = 11.455, 14.881, 34.677, formula = C76H266Al72N38O76
from ase.build import surface
print("water surrounding non-orthorhombic Au(211) slab, from an exact number of molecules")
slab = surface("Au", (2, 1, 1), 6)
slab.center(vacuum=11.0, axis=2)
slab.set_pbc(True)
out = packmol_around(fromASE(slab), [water], n_molecules=[32], tolerance=1.8)
out.write("Au211-water.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation)
print(f"{out.lattice=}")
water surrounding non-orthorhombic Au(211) slab, from an exact number of molecules
out.lattice=[(9.1231573482, 0.0, 0.0), (3.6492629392999993, 4.4694160692, 0.0), (0.0, 0.0, 31.161091638)]
Pack inside voids in crystals¶
Use the packmol_around
function. You can decrease tolerance
if
you need to pack very tightly. The default value for tolerance
is
2.0.
from scm.plams import fromASE
from ase.build import bulk
bulk_Al = fromASE(bulk("Al", cubic=True).repeat((3, 3, 3)))
rotation = "-85x,5y,0z"
plot_molecule(bulk_Al, rotation=rotation, radii=0.4);
out = packmol_around(
current=bulk_Al,
molecules=[from_smiles("[H]"), from_smiles("[He]")],
n_molecules=[50, 20],
tolerance=1.5,
)
plot_molecule(out, rotation=rotation, radii=0.4)
printsummary(out)
out.write("al-bulk-with-h-he.xyz")
178 atoms, density = 2.819 g/cm^3, box = 12.150, 12.150, 12.150, formula = Al108H50He20
Bonds, atom properties (force field types, regions, …)¶
The packmol()
function accepts the arguments keep_bonds
and
keep_atom_properties
. These options will keep the bonds defined for
the constitutent molecules, as well as any atomic properties.
The bonds and atom properties are easiest to see by printing the System block for an AMS job:
water = from_smiles("O")
n2 = from_smiles("N#N")
# delete properties coming from from_smiles
for at in water:
at.properties = Settings()
for at in n2:
at.properties = Settings()
water[1].properties.region = "oxygen_atom"
water[2].properties.mass = 2.014 # deuterium
water.delete_bond(water[1, 2]) # delete bond between atoms 1 and 2 (O and H)
from scm.plams import AMSJob
out = packmol([water, n2], n_molecules=[2, 1], density=0.5)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 3.0728760000 3.9143770000 1.9903040000 region=mol0,oxygen_atom
H 3.9160850000 3.5184940000 1.6850930000 mass=2.014 region=mol0
H 2.7876040000 4.6565520000 1.4140990000 region=mol0
O 4.9258210000 3.8909400000 3.9982150000 region=mol0,oxygen_atom
H 4.9810380000 3.6502800000 4.9468530000 mass=2.014 region=mol0
H 5.0008460000 4.8604790000 3.8619060000 region=mol0
N 1.1338120000 1.0294860000 0.9890770000 region=mol1
N 0.9243670000 1.6667980000 1.8734330000 region=mol1
End
BondOrders
1 3 1.0
4 6 1.0
7 8 3.0
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
By default, the packmol()
function assigns regions called mol0
,
mol1
, etc. to the different added molecules. The region_names
option lets you set custom names.
out = packmol(
[water, n2],
n_molecules=[2, 1],
density=0.5,
region_names=["water", "nitrogen_molecule"],
)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 3.0728760000 3.9143770000 1.9903040000 region=oxygen_atom,water
H 3.9160850000 3.5184940000 1.6850930000 mass=2.014 region=water
H 2.7876040000 4.6565520000 1.4140990000 region=water
O 4.9258210000 3.8909400000 3.9982150000 region=oxygen_atom,water
H 4.9810380000 3.6502800000 4.9468530000 mass=2.014 region=water
H 5.0008460000 4.8604790000 3.8619060000 region=water
N 1.1338120000 1.0294860000 0.9890770000 region=nitrogen_molecule
N 0.9243670000 1.6667980000 1.8734330000 region=nitrogen_molecule
End
BondOrders
1 3 1.0
4 6 1.0
7 8 3.0
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
Below, we also set keep_atom_properties=False
, this will remove the
previous regions (in this example “oxygen_atom”) and mass.
out = packmol([water, n2], n_molecules=[2, 1], density=0.5, keep_atom_properties=False)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 3.0728760000 3.9143770000 1.9903040000 region=mol0
H 3.9160850000 3.5184940000 1.6850930000 region=mol0
H 2.7876040000 4.6565520000 1.4140990000 region=mol0
O 4.9258210000 3.8909400000 3.9982150000 region=mol0
H 4.9810380000 3.6502800000 4.9468530000 region=mol0
H 5.0008460000 4.8604790000 3.8619060000 region=mol0
N 1.1338120000 1.0294860000 0.9890770000 region=mol1
N 0.9243670000 1.6667980000 1.8734330000 region=mol1
End
BondOrders
1 3 1.0
4 6 1.0
7 8 3.0
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
keep_bonds=False
will additionally ignore any defined bonds:
out = packmol(
[water, n2],
n_molecules=[2, 1],
density=0.5,
region_names=["water", "nitrogen_molecule"],
keep_bonds=False,
keep_atom_properties=False,
)
print(AMSJob(molecule=out).get_input())
System
Atoms
O 3.0728760000 3.9143770000 1.9903040000 region=water
H 3.9160850000 3.5184940000 1.6850930000 region=water
H 2.7876040000 4.6565520000 1.4140990000 region=water
O 4.9258210000 3.8909400000 3.9982150000 region=water
H 4.9810380000 3.6502800000 4.9468530000 region=water
H 5.0008460000 4.8604790000 3.8619060000 region=water
N 1.1338120000 1.0294860000 0.9890770000 region=nitrogen_molecule
N 0.9243670000 1.6667980000 1.8734330000 region=nitrogen_molecule
End
Lattice
5.9692549746 0.0000000000 0.0000000000
0.0000000000 5.9692549746 0.0000000000
0.0000000000 0.0000000000 5.9692549746
End
End
Complete Python code¶
#!/usr/bin/env amspython
# coding: utf-8
# ## Initial imports
from scm.plams import plot_molecule, from_smiles, Molecule
from scm.plams.interfaces.molecule.packmol import packmol, packmol_around
from ase.visualize.plot import plot_atoms
from ase.build import fcc111, bulk
import matplotlib.pyplot as plt
# ## Helper functions
def printsummary(mol, details=None):
if details:
density = details["density"]
else:
density = mol.get_density() * 1e-3
s = f"{len(mol)} atoms, density = {density:.3f} g/cm^3"
if mol.lattice:
s += f", box = {mol.lattice[0][0]:.3f}, {mol.lattice[1][1]:.3f}, {mol.lattice[2][2]:.3f}"
s += f", formula = {mol.get_formula()}"
if details:
s += f'\n#added molecules per species: {details["n_molecules"]}, mole fractions: {details["mole_fractions"]}'
print(s)
# ## Liquid water (fluid with 1 component)
# First, create the gasphase molecule:
water = from_smiles("O")
plot_molecule(water)
print("pure liquid from approximate number of atoms and exact density (in g/cm^3), cubic box with auto-determined size")
out = packmol(water, n_atoms=194, density=1.0)
printsummary(out)
out.write("water-1.xyz")
plot_molecule(out)
print("pure liquid from approximate density (in g/cm^3) and an orthorhombic box")
out = packmol(water, density=1.0, box_bounds=[0.0, 0.0, 0.0, 8.0, 12.0, 14.0])
printsummary(out)
out.write("water-2.xyz")
plot_molecule(out)
print("pure liquid with explicit number of molecules and exact density")
out = packmol(water, n_molecules=64, density=1.0)
printsummary(out)
out.write("water-3.xyz")
plot_molecule(out)
print("pure liquid with explicit number of molecules and box")
out = packmol(water, n_molecules=64, box_bounds=[0.0, 0.0, 0.0, 12.0, 13.0, 14.0])
printsummary(out)
out.write("water-4.xyz")
plot_molecule(out)
print("water-5.xyz: pure liquid in non-orthorhombic box (requires AMS2025 or later)")
# Non-orthorhombic boxes use UFF MD simulations behind the scenes
# You can pack inside any lattice using the packmol_around function
box = Molecule()
box.lattice = [[10.0, 2.0, -1.0], [-5.0, 8.0, 0.0], [0.0, -2.0, 11.0]]
out = packmol_around(box, molecules=[water], n_molecules=[32])
out.write("water-5.xyz")
plot_molecule(out)
print("Experimental feature (AMS2025): guess density for pure liquid")
print("Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!")
out = packmol(water, n_atoms=100)
print(f"Guessed density: {out.get_density():.2f} kg/m^3")
plot_molecule(out)
# ## Water-acetonitrile mixture (fluid with 2 or more components)
# Let's also create a single acetonitrile molecule:
acetonitrile = from_smiles("CC#N")
plot_molecule(acetonitrile)
# Set the desired mole fractions and density. Here, the density is calculated as the weighted average of water (1.0 g/cm^3) and acetonitrile (0.76 g/cm^3) densities, but you could use any other density.
# MIXTURES
x_water = 0.666 # mole fraction
x_acetonitrile = 1 - x_water # mole fraction
# weighted average of pure component densities
density = (x_water * 1.0 + x_acetonitrile * 0.76) / (x_water + x_acetonitrile)
print("MIXTURES")
print(f"x_water = {x_water:.3f}")
print(f"x_acetonitrile = {x_acetonitrile:.3f}")
print(f"target density = {density:.3f} g/cm^3")
# By setting ``return_details=True``, you can get information about the mole fractions of the returned system. They may not exactly match the mole fractions you put in.
print(
"2-1 water-acetonitrile from approximate number of atoms and exact density (in g/cm^3), "
"cubic box with auto-determined size"
)
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
n_atoms=200,
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-1.xyz")
plot_molecule(out)
# The ``details`` is a dictionary as follows:
for k, v in details.items():
print(f"{k}: {v}")
print("2-1 water-acetonitrile from approximate density (in g/cm^3) and box bounds")
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
box_bounds=[0, 0, 0, 13.2, 13.2, 13.2],
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-2.xyz")
plot_molecule(out)
print("2-1 water-acetonitrile from explicit number of molecules and density, cubic box with auto-determined size")
out, details = packmol(
molecules=[water, acetonitrile],
n_molecules=[32, 16],
density=density,
return_details=True,
)
printsummary(out, details)
out.write("water-acetonitrile-3.xyz")
plot_molecule(out)
print("2-1 water-acetonitrile from explicit number of molecules and box")
out = packmol(
molecules=[water, acetonitrile],
n_molecules=[32, 16],
box_bounds=[0, 0, 0, 13.2, 13.2, 13.2],
)
printsummary(out)
out.write("water-acetonitrile-4.xyz")
plot_molecule(out)
print("Experimental feature (AMS2025): guess density for mixture")
print("Note: This density is meant to be equilibrated with NPT MD. It can be very inaccurate!")
out = packmol([water, acetonitrile], mole_fractions=[x_water, x_acetonitrile], n_atoms=100)
print(f"Guessed density: {out.get_density():.2f} kg/m^3")
plot_molecule(out)
# ## Pack inside sphere
#
# Set ``sphere=True`` to pack in a sphere (non-periodic) instead of in a periodic box. The sphere will be centered near the origin.
print("water in a sphere from exact density and number of molecules")
out, details = packmol(molecules=[water], n_molecules=[100], density=1.0, return_details=True, sphere=True)
printsummary(out, details)
print(f"Radius of sphere: {details['radius']:.3f} ang.")
print(f"Center of mass xyz (ang): {out.get_center_of_mass()}")
out.write("water-sphere.xyz")
plot_molecule(out)
print(
"2-1 water-acetonitrile in a sphere from exact density (in g/cm^3) and "
"approximate number of atoms and mole fractions"
)
out, details = packmol(
molecules=[water, acetonitrile],
mole_fractions=[x_water, x_acetonitrile],
n_atoms=500,
density=density,
return_details=True,
sphere=True,
)
printsummary(out, details)
out.write("water-acetonitrile-sphere.xyz")
plot_molecule(out)
# ## Packing ions, total system charge
#
# The total system charge will be sum of the charges of the constituent molecules.
#
# In PLAMS, ``molecule.properties.charge`` specifies the charge:
ammonium = from_smiles("[NH4+]") # ammonia.properties.charge == +1
chloride = from_smiles("[Cl-]") # chloride.properties.charge == -1
print("3 water molecules, 3 ammonium, 1 chloride (non-periodic)")
print("Initial charges:")
print(f"Water: {water.properties.get('charge', 0)}")
print(f"Ammonium: {ammonium.properties.get('charge', 0)}")
print(f"Chloride: {chloride.properties.get('charge', 0)}")
out = packmol(molecules=[water, ammonium, chloride], n_molecules=[3, 3, 1], density=0.4, sphere=True)
tot_charge = out.properties.get("charge", 0)
print(f"Total charge of packmol-generated system: {tot_charge}")
out.write("water-ammonium-chloride.xyz")
plot_molecule(out)
# ## Microsolvation
# ``packmol_microsolvation`` can create a microsolvation sphere around a solute.
from scm.plams import packmol_microsolvation
out = packmol_microsolvation(solute=acetonitrile, solvent=water, density=1.5, threshold=4.0)
# for microsolvation it's a good idea to have a higher density than normal to get enough solvent molecules
print(f"Microsolvated structure: {len(out)} atoms.")
out.write("acetonitrile-microsolvated.xyz")
figsize = (3, 3)
plot_molecule(out, figsize=figsize)
# ## Solid-liquid or solid-gas interfaces
# First, create a slab using the ASE ``fcc111`` function
from scm.plams import plot_molecule, fromASE
from ase.build import fcc111
rotation = "90x,0y,0z" # sideview of slab
slab = fromASE(fcc111("Al", size=(4, 6, 3), vacuum=15.0, orthogonal=True, periodic=True))
plot_molecule(slab, figsize=figsize, rotation=rotation)
print("water surrounding an Al slab, from an approximate density")
out = packmol_around(slab, water, density=1.0)
printsummary(out)
out.write("al-water-pure.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation)
print("2-1 water-acetonitrile mixture surrounding an Al slab, from mole fractions and an approximate density")
out = packmol_around(slab, [water, acetonitrile], mole_fractions=[x_water, x_acetonitrile], density=density)
printsummary(out)
out.write("al-water-acetonitrile.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation)
from ase.build import surface
print("water surrounding non-orthorhombic Au(211) slab, from an exact number of molecules")
slab = surface("Au", (2, 1, 1), 6)
slab.center(vacuum=11.0, axis=2)
slab.set_pbc(True)
out = packmol_around(fromASE(slab), [water], n_molecules=[32], tolerance=1.8)
out.write("Au211-water.xyz")
plot_molecule(out, figsize=figsize, rotation=rotation)
print(f"{out.lattice=}")
# ## Pack inside voids in crystals
#
# Use the ``packmol_around`` function. You can decrease ``tolerance`` if you need to pack very tightly. The default value for ``tolerance`` is 2.0.
from scm.plams import fromASE
from ase.build import bulk
bulk_Al = fromASE(bulk("Al", cubic=True).repeat((3, 3, 3)))
rotation = "-85x,5y,0z"
plot_molecule(bulk_Al, rotation=rotation, radii=0.4)
out = packmol_around(
current=bulk_Al,
molecules=[from_smiles("[H]"), from_smiles("[He]")],
n_molecules=[50, 20],
tolerance=1.5,
)
plot_molecule(out, rotation=rotation, radii=0.4)
printsummary(out)
out.write("al-bulk-with-h-he.xyz")
# ## Bonds, atom properties (force field types, regions, ...)
#
# The ``packmol()`` function accepts the arguments ``keep_bonds`` and ``keep_atom_properties``. These options will keep the bonds defined for the constitutent molecules, as well as any atomic properties.
#
# The bonds and atom properties are easiest to see by printing the System block for an AMS job:
water = from_smiles("O")
n2 = from_smiles("N#N")
# delete properties coming from from_smiles
for at in water:
at.properties = Settings()
for at in n2:
at.properties = Settings()
water[1].properties.region = "oxygen_atom"
water[2].properties.mass = 2.014 # deuterium
water.delete_bond(water[1, 2]) # delete bond between atoms 1 and 2 (O and H)
from scm.plams import AMSJob
out = packmol([water, n2], n_molecules=[2, 1], density=0.5)
print(AMSJob(molecule=out).get_input())
# By default, the ``packmol()`` function assigns regions called ``mol0``, ``mol1``, etc. to the different added molecules. The ``region_names`` option lets you set custom names.
out = packmol(
[water, n2],
n_molecules=[2, 1],
density=0.5,
region_names=["water", "nitrogen_molecule"],
)
print(AMSJob(molecule=out).get_input())
# Below, we also set ``keep_atom_properties=False``, this will remove the previous regions (in this example "oxygen_atom") and mass.
out = packmol([water, n2], n_molecules=[2, 1], density=0.5, keep_atom_properties=False)
print(AMSJob(molecule=out).get_input())
# ``keep_bonds=False`` will additionally ignore any defined bonds:
out = packmol(
[water, n2],
n_molecules=[2, 1],
density=0.5,
region_names=["water", "nitrogen_molecule"],
keep_bonds=False,
keep_atom_properties=False,
)
print(AMSJob(molecule=out).get_input())