Excitation energy calculations with (nearly) exact Kohn-Sham potentials

Evert Jan Baerends

Vrije Universiteit, Amsterdam, The Netherlands

occupied orbital energies

LDA/GGA: typically 4 – 6 eV too high (HF typically 1 eV too low)

An error of 100 – 140 kcal/mol, totally unacceptable in the total energy

HF, DFA and exact KS HOMO orbital energies

	HF	LDA	BLYP	$-IP = \epsilon^{KS}$
H ₂	-16.18	-10.26	-10.39	-16.44
H ₂ O	-13.88	-7.40	-7.21	-12.62
HF	-17.69	-9.82	-9.64	-16.19
N ₂	-16.71	-11.89	-11.49	-16.68
СО	-15.1	-9.11	-9.00	-14.01
HCN	-13.50	-9.23	-8.87	-13.61
FCN	-13.65	-8.97	-8.62	-13.67
HCl	-12.98	-8.15	-7.91	-12.77

KS HOMO is equal to -I;

HF HOMO is appr. equal to -I (frozen orbital approx.) LDA, GGA orbital energies are upshifted by ca. 4 - 6 eV (uniformly: occup. and unoccup *valence* orbitals)

occupied orbital energies

 LDA/GGA: typically 4 – 6 eV too high (HF typically 1 eV too low)

Why?

- Not because of wrong asymptotics of potentials
- Not because of self-interaction error

But because LDA/GGA potentials are strongly upshifted in the bulk molecular region for a different reason

orbital energy determined by bulk molecular region

$$\varepsilon_i = \left\langle \psi_i(\mathbf{r}) \middle| -\frac{1}{2} \nabla^2 + V_{nuc}(\mathbf{r}) + V_{Coul}(\mathbf{r}) + V_{XC}(\mathbf{r}) \middle| \psi_i(\mathbf{r}) \right\rangle$$

Determined by molecular region where $\psi_i(\mathbf{r})$ has largest amplitude and where potentials $V_{nuc}(\mathbf{r}), V_{Coul}(\mathbf{r}), V_{XC}(\mathbf{r})$ are large.

Asymptotic regions contribute little! (Except for Rydberg orbitals.)

Too high orbital energies: LDA/GGA potentials are strongly upshifted in the bulk molecar region

Exact and LDA KS potentials

van Leeuwen and Baerends, PRA 1994

N2: XC potentials along bond axis

Grüning, Gritsenko, Baerends, JCP 2002

Gavini et al. JPCL 12(2021): H₂ at R_{ρ}

Gavini et al. JPCL 12(2021): H_2 at $2R_{\rho}$

Why is LDA/GGA potential so upshifted? Because response part of potential is wrong!

$$E_{XC} = \int \rho(\mathbf{r}) \varepsilon_{XC}(\mathbf{r}) d\mathbf{r}$$
$$= \frac{1}{2} \int \rho(\mathbf{r}) \overline{v}_{XC}^{hole}(\mathbf{r}) d\mathbf{r}$$

$$\begin{array}{c|c} & & & & \\ \hline \rho(\mathbf{r}_2) & & \rho^{hole}(\mathbf{r}_1;\mathbf{r}_2) \\ \hline & & & \\ \hline & & & \\ \hline & & & \mathbf{r}_1 & \rightarrow \mathbf{r}_2 \end{array}$$

$$\Rightarrow \varepsilon_{XC}(\mathbf{r}) = \frac{1}{2} \overline{v}_{XC}^{hole}(\mathbf{r}_{1})$$

1

How does reponse potential look?

It has steps; zero in HOMO region

R. van Leeuwen, O. Gritsenko, E. J. Baerends, Z. Phys. D 33 (1995) 229

Steps in the (exchange) pot. of Krypton come from response part of pot.

O. Gritsenko, R. van Leeuwen, E. J. Baerends J. Chem. Phys. **101** (1994) 8955 exact expression for v^{resp} : $v^{N-1} - v_s^{N-1}$

$$v^{resp}(1) = v^{N-1}(1) - v_s^{N-1}(1) = \sum_{j=1}^{N-1} \frac{\left| d_j(1) \right|^2}{\rho(1)} \left(I_j - I_0 \right) - \sum_{j=1}^{N-1} \frac{\left| \psi_j^s(1) \right|^2}{\rho(1)} \left(-\varepsilon_j - I_0 \right)$$

Dyson orbitals: very similar to KS orbitals and HF orbitals for primary ion states exact ionization energies

The response potential consists of contributions that have step like behavior when going from one shell to the next in an atom or molecule

LDA/GGA response pot.: no steps!

$$E_X^{LDA} = \int \rho(\mathbf{r}) \varepsilon_X^{LDA}(\mathbf{r}) d\mathbf{r} = \frac{1}{2} \int \rho(\mathbf{r}) v_{Xhole}^{EG}(\mathbf{r}) d\mathbf{r}$$

$$v_{Xhole}^{EG}(\mathbf{r}) = -3\left(\frac{3}{8\pi}\right)^{\frac{1}{3}}\rho(\mathbf{r})^{\frac{1}{3}}$$

Long before LDA:

Slater: square hole around position **r** of electron with depth $-(1/2)\rho(\mathbf{r})$, integrating to -1, gives practically same potential $C\rho(\mathbf{r})^{1/3}$

Slater (band structure theorists) applied this in one-electron equations as exchange potential

Gaspar-Kohn-Sham (DFT):

Proper variational derivation of one-el. equations for the optimal orbitals yields:

$$v_X^{LDA}(\mathbf{r}) = \frac{2}{3} v_{Xhole}^{EG}(\mathbf{r})$$

 \rightarrow Slater's X α method: use potential $\alpha .v_{Xhole}^{EG}(\mathbf{r})$

 α has been determined in various ways in atoms (e.g. K. Schwarz, 1972):

- exact exchange energy optimized;
- Virial Theorem obeyed
- energy equal to Hartree-Fock energy

 $\rightarrow \alpha$ in range 0.78 (lightest elements) -0.71 (beyond first row)

or in molecules (E. J. Baerends, 1973) ($\alpha = 0.70$)

\rightarrow Slater's X α method: use potential αv_{Xhole}^{EG}

Actually, Slater resisted initially:

- orbital energies are "better" with full Slater (EG) exchange pot.!

J.C. Slater, *Quantum Theory of Molecules and Solids*, Vol. 3 (1967): *Insulators, semiconductors and metals*p. 243: Some writers have felt that on account of the importance of the variation principle for the total energy, it was more important to use ... an exchange correction determined by variation of the total energy ...

The author does not agree with this point of view, feeling that the oneelectron energies are more important in energy-band calculations.

The slightly different wavefunctions which we find by use of [the full $v_{Xhole}^{EG}(\mathbf{r})$] rather than $(2/3)v_{Xhole}^{EG}(\mathbf{r})$ will only make a second order change in the total energy.

Orbital energies from Slater (EG), LDA/GGA compared to exact KS

N ₂	$3\sigma_{g}$	$1\pi_{u}$	$2\sigma_{u}$
$-I_i$	- 15.58	- 16.83	- 18.75
$\mathcal{E}_{i}(\mathrm{KS})$	- 15.58	- 16.84	- 18.89
\mathcal{E}_i (Slater)	- 15.39	- 16.66	- 18.62
$\mathcal{E}_i(\text{BLYP})$	- 10.28	- 11.49	- 13.39

Gritsenko, Mentel, Baerends, JCP 144 (2016) 204114

Orbital energies from Slater (EG), LDA, GGA compared to exact KS

H ₂ CO	2b ₂	1b ₁	5a ₁	1b ₂	4a ₁
$-I_i$	- 10.9	- 14.5	- 16.1	- 17.0	-21.4
$\mathcal{E}_{i}(\mathrm{KS})$	- 10.90	- 14.26	- 15.51	- 16.46	- 20.04
\mathcal{E}_i (Slater)	- 10.99	- 14.56	- 15.91	- 16.82	- 20.57
$\mathcal{E}_i(\text{BLYP})$	-6.22	- 9.94	- 10.93	- 12.08	- 15.59

Gritsenko, Mentel, Baerends, JCP 144 (2016) 204114

The LDA X-response pot. is (way) too repulsive

$$v_X^{LDA}(\mathbf{r}) = \frac{2}{3} v_{Xhole}^{EG}(\mathbf{r}) = -\frac{2}{3} 3 \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \rho(\mathbf{r})^{\frac{1}{3}} = -2 \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \rho(\mathbf{r})^{\frac{1}{3}}$$

$$v_X^{LDA}(\mathbf{r}) = -2\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \rho(\mathbf{r})^{\frac{1}{3}} = -3\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \rho(\mathbf{r})^{\frac{1}{3}} + \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \rho(\mathbf{r})^{\frac{1}{3}}$$
$$v_{Xhole}^{EG}(\mathbf{r}) + v_{Xresp}^{LDA}(\mathbf{r})$$
$$(1/3) \text{ of hole pot.!}$$
$$(1/2) \text{ of total X pot.}$$

Wrong response potential causes uniform upshift of orbital energies!

How to model the response potential?

Krieger-Li-Iafrate (1994) derived a good approximation to the OEP potential in the exact-exchange only case:

$$v_X^{KLI}(\mathbf{r}) \approx v_{Xhole}^{HF} + \sum_{i=1}^H w_i \frac{|\psi_i(\mathbf{r})|^2}{\rho(\mathbf{r})}$$

KLI exch.-response pot.: steps of height w_i

Approximation (GLLB) of v_{Xresp}

Step behavior introduced with $w_i = f(\varepsilon_F - \varepsilon_i)$

scaling density $\rho_{\lambda}(\mathbf{r}) = \lambda^{3} \rho(\lambda \mathbf{r})$ yields $v_{\chi}[\rho_{\lambda}](\mathbf{r}) = \lambda v_{\chi}[\rho](\lambda \mathbf{r})$

dictates, with $\varepsilon_i[\rho_{\lambda}] = \lambda^2 \varepsilon_i[\rho]$,

 $f(\lambda^{2}(\varepsilon_{F} - \varepsilon_{i})) = \lambda f(\varepsilon_{F} - \varepsilon_{i}) \text{ so } f \text{ must be prop. to square root:}$ $f \rightarrow K \sqrt{\varepsilon_{F} - \varepsilon_{i}}$ $v_{Xresp}^{GLLB}(\mathbf{r}) = K[\rho] \sum_{i=1}^{H} \sqrt{\varepsilon_{F} - \varepsilon_{i}} \frac{|\psi_{i}(\mathbf{r})|^{2}}{\rho(\mathbf{r})} \text{ Exact in EG with } K = 0.382$

Gritsenko, van Leeuwen, van Lenthe, Baerends, PRA 1995

Build up correct potential:

1) $v_X^{hole}(\mathbf{r})$ from $2\varepsilon_X^{GGA}[\rho(\mathbf{r})](\mathbf{r}) = 2\varepsilon_X^{LDA}(\mathbf{r}) + 2\varepsilon_X^{B88}(\mathbf{r})$

- $2\varepsilon_X^{LDA}(\mathbf{r}) = v_{Xhole}^{LDA}(\mathbf{r})$ no factor 2/3!
- note: B88 correction makes energy density go like -1/2rso $v_{Xhole}^{B88}(\mathbf{r})$ has proper -1/r asymptotics

2)
$$v_X^{resp}(\mathbf{r})$$
 taken as $v_{Xresp}^{GLLB}(\mathbf{r})$

3) correlation potential (hole + resp.) from LDA: $v_{corr}^{VWN}(\mathbf{r})$ ---> B-GLLB-VWN

N₂ orbital energies

N ₂ (K=0.382)	3σ _g (HOMO)	2π _u	2σ _u	2σ _g
<i>v_{xhole,ii}</i> (LDA)	- 24.89	-23.51	-24.72	- 29.47
$v_{xhole,ii}$ (B)	-2.54	-2.48	-2.52	- 1.83
<i>v_{xresp,ii}</i> (GLLB)	+ 4.56	+ 5.10	+ 3.97	+ 6.05
v _{c,ii} (VWN)	- 1.76	- 1.75	- 1.76	- 1.91
^v xctot,ii	- 24.63	- 22.63	- 25.03	- 27.16
$h_{ii} + v_{H,ii}$	+ 8.89	+ 6.16	+ 5.73	- 6.17
E _i (BGLLBVWN)	- 15.74	- 16.47	- 19.30	- 33.33
E _i (KS)	- 15.58	- 16.84	- 18.89	- 33.67
$\Delta \varepsilon_i$	-0.16	0.37	-0.41	0.34

N₂ orbital energies

N ₂ (K=0.382)	3σ _g (HOMO)	$2\pi_{\mathbf{u}}$	2σ _u	2σ _g
v _{xhole,ii} (LDA)	- 24.89	- 23.51	-24.72	- 29.47
$v_{xhole,ii}$ (B)	-2.54	-2.48	-2.52	- 1.83
<i>v_{xresp,ii}</i> (GLLB)	+ 4.56	+ 5.10	+ 3.97	+ 6.05
v _{c,ii} (VWN)	- 1.76	- 1.75	- 1.76	- 1.91
^v xctot,ii	- 24.63	- 22.63	- 25.03	- 27.16
$h_{ii} + v_{H,ii}$	+ 8.89	+ 6.16	+ 5.73	- 6.17
E _i (BGLLBVWN)	- 15.74	- 16.47	- 19.30	- 33.33
E _i (KS)	- 15.58	- 16.84	- 18.89	- 33.67
$\Delta \varepsilon_i$	-0.16	0.37	-0.41	0.34
$\Delta \epsilon_i$ (LDA+B–KS)	4.82	4.91	4.99	5.00

HCOOH orbital energies (K=0.34)

	10a'	2a''	9a′	9a' 1a'' 8a' 7a'		7a'
	HOMO					
<i>v_{xhole,ii}</i> (LDA)	-27.33	- 27.95	-27.16	- 25.03	- 28.02	- 24.38
$v_{xhole,ii}$ (B)	-2.63	- 2.63	-2.57	-2.55	-2.61	-2.32
<i>v_{xresp,ii}</i> (GLLB)	+ 4.86	+ 5.64	+ 5.74	+ 5.86	+ 5.69	+ 5.64
$v_{c,ii}$ (VWN)	- 1.83	- 1.85	- 1.83	- 1.78	-1.87	- 1.78
^v xctot,ii	- 26.94	- 26.81	- 25.82	- 23.50	- 26.79	- 22.83
h _{ii} + v _{H,ii}	+15.33	+14.20	+11.59	+ 8.06	+10.20	+5.68
E _i (BGLLBVWN)	-11.61	- 12.61	- 14.23	- 15.44	- 16.59	- 17.15
€ _i (KS)	- 11.51	- 12.38	- 14.48	- 15.43	- 16.64	- 17.27
$\Delta \varepsilon_i$	-0.10	- 0.23	0.25	-0.01	0.05	0.12
⊿ ε _i (LDA+B	4.23	3.82	4.07	3.78	4.17	3.82

HCOOH lower orbital energies (K=0.34)

	7a'	6a'	5 a'	4 a'
v _{xhole,ii} (LDA)	- 24.38	- 24.95	- 31.36	- 29.60
<i>v_{xhole,ii}</i> (B)	-2.32	-2.24	-2.08	-2.05
<i>v_{xresp,ii}</i> (GLLB)	+ 5.64	+ 5.99	+ 5.91	+ 6.12
$v_{c,ii}$ (VWN)	-1.78	- 1.79	- 1.95	- 1.90
^v xctot,ii	- 22.83	- 23.01	- 29.48	- 27.44
$h_{ii} + v_{H,ii}$	+ 5.68	+ 2.17	- 1.11	- 5.41
Ei (BGLLBVWN)	- 17.15	- 20.84	- 30.95	- 32.85
€ _i (KS)	- 17.27	-21.17	- 30.43	- 32.94
$\Delta \varepsilon_i$	0.12	-0.33	-0.16	0.09
$\Delta \mathcal{E}_i$ (LDA+B–KS)	3.82	3.88	4.14	4.14

Good orbital energies (not upshifted) very important in anions

LB94: HOMO $F^- = 3.48 \text{ eV}$; IP = 3.40 eV

B-GLLB-VWN, see Amati, Baerends JCTC 16 (2020) 443:

Many closed shell anions: MAE + 0.14 eV

Many open shell anions: MAE + 0.48 eV

What is the meaning of an orbital with positive orbital energy?

What is the meaning of KS orbital energies?

Prevailing view on occupied orbital energies: "..one should expect no simple physical meaning for the KS orbital energies. *There is none*." WRONG!

Prevailing view on virtual KS orbital energies: The HOMO-LUMO gap is too low (the "band gap" problem of KS DFT) WRONG!

KS HOMO-LUMO gaps Δ are excellent approx. to excitation energies

	$\Delta^{\rm HF}$	Δ ^{LDA}	Δ^{BLYP}	Δ ^{KS}	Expt. exc singlet	it. energy triplet
H ₂	17.6	10.6	10.5	12.5	12.7	11.7
H ₂ O	14.7	6.5	6.2	7.5	7.65	7.5
HF	18.5	8.9	8.5	10.5	10.3	9.9
N_2	19.9	9.7	9.6	9.9	9.3-10.3	7.8-8.9
СО	17.0	6.9	7.1	7.5	8.5	6.3
HCN	15.4	7.9	7.8	8.0	8.8	6.2
FCN	14.8	7.3	7.0	7.6	8.4	7.8
HC1	13.8	7.0	6.8	7.4	7.8	7.4

1) The LDA, GGA gaps (aug-cc-pVTZ basis) are similar (slightly smaller) than KS gaps

-> the upshift is similar for HOMO and (a bit smaller for) LUMO

2) HF gaps are much larger: Koopmans' approx. to IP – EA if \mathcal{E}_{LUMO} neg. Many HF LUMOs at positive orbital energy!

HF, DFA and exact KS LUMO orbital energies

	HF	LDA	BLYP	KS
H ₂	+1.42	+0.31	+0.12	-3.93
H ₂ O	+0.80	-0.92	-1.06	-5.11
HF	+0.81	-0.93	-1.13	-5.71
N ₂	+3.91	-2.21	-1.91	-6.77
СО	+1.88	-2.24	-1.94	-6.56
HCN	+1.93	-1.33	-1.07	-5.53
FCN	+1.16	-1.66	-1.59	-6.01
HC1	+0.79	-1.11	-1.15	-5.36

KS LUMO is at negative energy: a bound one-electron state in the KS potential.

HF LUMO is most of the time *unbound* (positive orbital energy) LDA, GGA LUMO: still negative -> therefore bound state

Orbital energies (eV) of the positive energy HF LUMO of H_2 as function of the basis (STOs)

	SZ	DZ	DZP	TZP	TZ2P	QZ4P	ETQZ3P 2D
$1\sigma_u$	18.12	5.52	5.11	3.39	3.45	2.67	1.18
$1\sigma_{g}$	-15.88	-16.26	-16.20	-16.21	-16.20	-16.18	-16.18
gap	34.00	21.77	21.31	19.59	19.66	18.85	17.36

Shape of the $1\sigma_u$ LUMO density of H₂ as a function of basis set:

proper KS pot. important for *virtual* orbital spectrum!

transbutadiene

GGA (PW91) excitation energies

For TDDFT it is essential to have orbitals and orbital energies from good approx. to exact KS potential

\rightarrow B-GLLB-VWN!

- good occupied and virtual orbital energies
- from B88 correction to LDA proper −1/r asymptotics of potential expected
 → Rydbergs OK?

Vertical excitations 1,3-transbutadiene TDDFT with B-GLLB-VWN approx. to exact KS potential + ALDA kernel

poor! Rydbergs too much upshifted -> asymptotics of potential not right?

Why such poor TDDFT results with B-GLLB-VWN potential?

Possibly due to deficient long range / asymptotic behavior of potential, in spite of -1/r asymptotics coming from B88 energy density ?

Test: add asymptotic behavior of LB94 KS potential (R. van Leeuwen, E. J. Baerends, PRA 1994)

Vertical excitation energies (eV) 1,3-transbutadiene with proper asymptotics

Compare to CC

Excitations 1,3-transbutadiene, best theoretical results

	6-31G(d) CC3	a	ug-cc-pVTZ	Z	th.	th.	EXP.
	CC3	CC3	CCSDT	NEV- PT2	SAC-CI	MR- AQCC	
B _u	6.41	6.22	6.24	6.68	6.33	6.36	5.92
Bg	6.53	6.33	6.34	6.44	6.18	6.32	6.21
A _u	6.87	6.64	6.66	6.84	6.45	6.56	6.64
Ag	6.73	6.67	6.60	6.70	6.56	6.50	
A _u	6.93	6.80	6.81	7.01	6.65	6.74	6.80
Bu	7.98	7.68		7.45	7.08	7.02	7.07

Acetone: orbital en. differences and excit. energies (eV)

Funct.	State	Weight	Е _і	Ea	ΔE _{ia}	(D) TD- DFT	$\omega - \Delta \mathcal{E}_{ia}$	$\omega - E_{exp}$
	1A ₂	1.00	-10.25	-5.92	4.33	4.59	0.26	0.16
"exact" KS pot.	1B ₂	1.00	-10.25	-4.18	6.07	6.09	0.02	-0.27
(SAOP)	2A ₂	0.84	-10.25	-2.72	7.53	7.52	0.00	0.16
	2A ₁	0.97	-10.25	-3.09	7.16	7.21	0.05	-0.20
	2B ₂	0.97	-10.25	-2.63	7.62	7.64	0.02	0.15
	3A ₁	0.97	-10.25	-2.04	8.21	8.20	0.00	0.40
	3B ₂	0.97	-10.25	-2.51	7.74	7.74	0.00	-0.35
	1B ₁	0.95	-10.25	-5.92	7.92	8.17	0.24	0.00

Acetone: orbital en. differences and excit. energies (eV)

Funct.	State	Weight	E _i	Ea	ΔE _{ia}	W TD- DFT	<i>ω– Δε_{ia}</i>	$\omega - E_{exp}$
BP86	1A ₂	1.00	-5.71	-1.70	4.01	4.27	0.26	-0.16
	1B ₂	1.00	-5.71	-0.61	5.10	5.10	0.00	-1.26
	2A ₂	1.00	-5.71	-0.11	5.60	5.59	0.00	-1.77
	2A ₁	1.00	-5.71	-0.13	5.58	5.58	0.00	-1.83
	2B ₂	1.00	-5.71	-0.07	5.64	5.64	- 0.01	-1.85
	3A ₁	0.98	-5.71	+0.36	6.07	6.06	- 0.01	-1.74
	3B ₂	1.00	-5.71	+0.05	5.76	5.75	0.00	-2.34
	1B ₁	1.00	-5.71	+0.31	6.02	6.01	-0.01	-2.16

Acetone: orbital en. differences and excit. energies (eV)

Funct.	State	Max. Weight	E _i	Ea	ΔE _{ia}	00 TD- DFT	$\omega - \Delta \mathcal{E}_{ia}$	$\omega - E_{exp}$
TDHF	1A ₂	0.47	-11.23	+3.96	15.18	5.03	-10.15	0.60
	1B ₂	0.36	-11.23	+0.62	11.85	8.24	-3.61	1.88
	2A ₂	0.43	-11.23	+1.02	12.25	9.02	-3.23	1.66
	2A ₁	0.20	-11.23	+0.96	12.19	9.07	-3.12	1.66
	2B ₂	0.31	-11.23	+1.20	12.43	9.13	-3.30	1.64
	3A ₁	0.21	-11.23	+3.96	17.15	9.41	-7.74	1.61
	3B ₂	0.23	-11.23	+1.74	12.96	9.59	-3.37	1.50
	1B ₁	0.84	-11.23	+1.12	12.35	9.89	-2.46	1.72

Acetone: orbital energy differences and excitation energies (eV)

Funct.	State	Max. Weight	E _i	Ea	ΔE _{ia}	Ю TD- DFT	<i>ω– Δε_{ia}</i>	$\omega - E_{exp}$
M06- 2X	1A ₂	0.52	-8.85	+0.78	9.63	4.03	-5.60	-0.40
	1B ₂	0.73	-8.85	-0.34	8.51	6.54	-1.97	0.18
	2A ₂	0.62	-8.85	+0.04	8.88	7.33	-1.55	-0.03
	2A ₁	0.62	-8.85	+0.03	8.87	7.38	-1.49	-0.03
	2B ₂	0.45	-8.85	+0.15	9.00	7.40	- 1.60	-0.09
	3A ₁	0.79	-8.85	+0.74	9.58	8.03	- 1.55	0.23
	3B ₂	0.42	-8.85	+0.64	9.49	7.80	-1.69	-0.29
	1B ₁	0.92	-8.85	+0.73	9.58	8.12	-1.45	-0.05

References:

M. Amati, E. J. Baerends **TDDFT excitation energies with accurate KS potentials: the B-GLLB-VWN approximation to the exact KS potential**

to be subm.

O. Gritsenko, R. van Leeuwen, E. Van Lenthe, E. J. Baerends Self-consistent approximation to the Kohn-Sham potential Phys. Rev. A 51 (1995) 1944

O. Gritsenko, L. Mentel, E. J. Baerends, On the errors of LDA and GGA approximations to the KS potential and orbital energies: B-GLLB-VWN J. Chem. Phys. 144 (2016) 204114

E. J. Baerends, O. V. Gritsenko, R. Van Meer *The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies* PCCP (Perspective) **15** (2013) 16408

R. van Meer, O. V. Gritsenko, E. J. Baerends *Physical meaning of virtual Kohn-Sham orbitals and orbital energies: an ideal basis for the description of molecular excitations*J. Chem. Theor. Comp. **10** (2014) 4432