Analytical Excited State Gradients for Time Dependent Density Functional Theory plus Tight Binding (TDDFT+TB)

Shana Havenridge, Robert Rüger, and Christine M. Aikens

Applications of Photoluminescence

Photoluminescence can predict the maximum voltage in solar cell absorbers (Photovoltaics)

ACS Nano., 2016, 10, 11, 10573-10579

Fluorescent Nanocomposites (Bioimaging) Photoinduced electron transfer allows efficient generation of singlet oxygen (PDT)

ACS Appl. Nano Mater., 2022, 5, 5, 6532–6542

Tunable RTP light-emitting colors upon UV light, and white-light-emitting phosphorescence due to the ordered micro/nanostructure of the RTP films (Optoelectronics)

KANSAS STATE

J. Mater. Chem. C, **2018**, 6, 4444-4449

Structure-Property Relationships

J. Am. Chem. Soc., 2016, 138, 12, 3950-3953

Theoretically understand structure-property relationships in noble metal nanoclusters so that they can be tuned for specific applications in a plethora of fields

Time-dependent Density Functional Theory

- Ground state DFT calculation to obtain orbital energies
- Forms EOM → square matrices of virtual to occupied orbital transitions, with excitation and de-excitation vectors in a specific Hilbert space³
- A symmetric eigenvalue problem is then set up where eigenvalue is the vertical excitation energy of the system⁴

$$\begin{pmatrix} \boldsymbol{A} + \boldsymbol{B} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{A} - \boldsymbol{B} \end{pmatrix} \begin{pmatrix} \vec{X}_I + \vec{Y}_I \\ \vec{X}_I - \vec{Y}_I \end{pmatrix} = \Delta_I \begin{pmatrix} \boldsymbol{0} & -1 \\ -1 & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \vec{X}_I + \vec{Y}_I \\ \vec{X}_I - \vec{Y}_I \end{pmatrix}$$

This simplifies to the **Casida Equations**⁴ $\Omega \vec{F}_I = \Delta_I^2 \vec{F}_I$

Understand change in electronic density from a perturbation^{1,2}

$$\rho(\vec{r},t) = \rho^0(\vec{r}) + \delta\rho(\vec{r},t)$$

Coupling Matrix:

$$\begin{split} K_{ia\sigma,jb\tau} &= K_{ia\sigma,jb\tau}^{\rm H} + K_{ia\sigma,jb\tau}^{\rm xc} \\ K_{ia\sigma,jb\tau}^{\rm H} &= \int {\rm d}^3 \vec{r} \int {\rm d}^3 \vec{r}' \, \phi_{i\sigma}^*(\vec{r}) \phi_{a\sigma}(\vec{r}) \, \frac{1}{|\vec{r} - \vec{r}'|} \, \phi_{b\tau}^*(\vec{r}') \phi_{j\tau}(\vec{r}') \\ K_{ia\sigma,jb\tau}^{\rm xc} &= \int {\rm d}^3 \vec{r} \int {\rm d}^3 \vec{r}' \, \phi_{i\sigma}^*(\vec{r}) \phi_{a\sigma}(\vec{r}) \, f_{\sigma\tau}^{\rm xc}(\vec{r},\vec{r}') \, \phi_{b\tau}^*(\vec{r}') \phi_{j\tau}(\vec{r}') \\ K_{ia\sigma,jb\tau}^{\rm xc} &= \int {\rm d}^3 \vec{r} \int {\rm d}^3 \vec{r}' \, \phi_{i\sigma}^*(\vec{r}) \phi_{a\sigma}(\vec{r}) \, f_{\sigma\tau}^{\rm xc}(\vec{r},\vec{r}') \, \phi_{b\tau}^*(\vec{r}') \phi_{j\tau}(\vec{r}') \\ \end{split}$$

Phys. Rev. Lett., **1985**, 55, 2850-2852
 Phys. Rev. Lett., **1986**, 57, 923

- 3. J. Mol. Struct. Theochem., 2009, 914, 3-18
- 4. World Scientific., 1995, 1, 155-192.

Time-dependent DFT plus tight-binding (TDDFT+TB)

$$K_{ia\sigma,jb\tau} = K_{ia\sigma,jb\tau}^{\rm H} + K_{ia\sigma,jb\tau}^{\rm xc}$$

$$K_{ia\sigma,jb\tau}^{\rm H} = \int d^3\vec{r} \int d^3\vec{r}' \,\phi_{i\sigma}^*(\vec{r})\phi_{a\sigma}(\vec{r}) \frac{1}{|\vec{r} - \vec{r}'|} \,\phi_{b\tau}^*(\vec{r}')\phi_{j\tau}(\vec{r}')$$

$$K_{ia\sigma,jb\tau}^{\rm xc} = \int d^3\vec{r} \int d^3\vec{r}' \,\phi_{i\sigma}^*(\vec{r})\phi_{a\sigma}(\vec{r}) \,f_{\sigma\tau}^{\rm xc}(\vec{r},\vec{r}') \,\phi_{b\tau}^*(\vec{r}')\phi_{j\tau}(\vec{r}')$$

World Scientific., 1995, 1, 155-192.

Approximation → Multipole expansion of transition density to the first order (monopole approximation)

Löwdin partial charge analysis

Function based on chemical hardness and internuclear distance

$$K_{ia,jb} = \sum_{\mathcal{AB}} q_{ia,\mathcal{A}} \tilde{\gamma}_{\mathcal{AB}} q_{jb,\mathcal{B}}$$

$$q_{ia,\mathcal{A}} = \sum_{\mu \in \mathcal{A}} c'_{\mu i} c'_{\mu a}$$
 with $C' = S^{\frac{1}{2}}C$

$$\gamma_{\mathcal{A}\mathcal{B}} = \gamma_{\mathcal{A}\mathcal{B}} \left(\eta_{\mathcal{A}}, \eta_{\mathcal{B}}, \left| \vec{R}_{\mathcal{A}} - \vec{R}_{\mathcal{B}} \right| \right)$$

J. Chem. Phys., 2016, 144, 184103

Time-dependent DFT plus tight-binding (TDDFT+TB)

Dual Emission of Au₁₄Cd(S-Adm)₁₂

Nuclear Coordinates

Two emissive states on S_1 surface: $Abs_1 = 1.59 \text{ eV}$ $E_{ems1} = 1.09 \text{ eV}$ $SS_1 = 0.50 \text{ eV}$ $E_{ems1'} = 0.86 \text{ eV}$ $SS_{1'} = 0.73 \text{ eV}$

 $\Delta E_{ems} = 0.23 \text{ eV}$

Smaller gap, faster transition

 $SS_1 = 0.64 \text{ eV}$ $SS_{1'} = 0.87 \text{ eV}$

Nature Comm., 2020, 11, 2897, 1-9

Two emissive points \rightarrow Minima on S₁ state or two different minimum points on two different states?

Phys. Chem. Chem. Phys., 2003, 5, 2964-2969

DFT

Derivation:

- 1. Define an energy functional that is equivalent to the vertical excitation energy of that system
- 2. Set up an energy functional that is stationary with respect to the molecular orbital coefficients
- 3. Solve the Lagrange multipliers after the constraints have been defined
- 4. Take the full derivative of each term

TD-DFT

linear response

1. Define an energy functional that is equivalent to the vertical excitation energy

$$G[X,Y,\Omega] = \frac{1}{2} \left\langle \begin{matrix} X+Y\\ X-Y \end{matrix} | \Lambda | \begin{matrix} X+Y\\ X-Y \end{matrix} \right\rangle - \frac{1}{2} \Omega \left(\left\langle \begin{matrix} X+Y\\ X-Y \end{matrix} | \Delta | \begin{matrix} X+Y\\ X-Y \end{matrix} \right\rangle - 2 \right)$$

$$\Lambda = \begin{pmatrix} A+B & 0\\ 0 & A-B \end{pmatrix} \qquad \Delta = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

J. Chem. Phys., 2002, 117, 7433

Comput. Chem., 2007, 28, 2589-2601

2. Set up an energy functional that is stationary with respect to the molecular orbital coefficients (Lagrange approach)

$$L[X, Y, \Omega, C, Z, W] = G[X, Y, \Omega] + \sum_{ia} Z_{ia} F_{ia} - \sum_{pq, p \le q} W_{pq}(S_{pq} - \delta_{pq})$$

J. Chem. Phys., 2002, 117, 7433

10

3. Solve the Lagrange multipliers after the constraints have been defined

Functional to be stationary with respect to Lagrange multipliers

MOs to be orthonormal and satisfy the ground state DFT equations \rightarrow Restrict transformation of MO coefficients

$$\frac{\partial L}{\partial Z_{ia}} = F_{ia} = 0$$

$$\frac{\partial L}{\partial W_{pq}} = S_{pq} - \delta_{pq} = 0$$

$$\sum_{\mu} \frac{\partial G[X, Y, Z]}{\partial C_{\mu p}} C_{\mu q} + \sum_{ia} Z_{ia} \sum_{\mu} \frac{\partial F_{ia}}{\partial C_{\mu p}} C_{\mu q} = \sum_{rs, r \leq s} W_{rs} \sum_{\mu} \frac{\partial S_{rs}}{\partial C_{\mu p}} C_{\mu q}$$

 $U_A = \sum_{ia} (X + Y)_{ia} q_{ia,A}$ $\Xi_A = \sum_B \gamma_{AB} U_B$

4. Take the full derivative of each term

$$\begin{split} L[X, Y, \Omega, C, Z, W] &= G[X, Y, \Omega] + \sum_{ia} Z_{ia} F_{ia} - \sum_{pq, p \le q} W_{pq} (S_{pq} - \delta_{pq}) \\ &\frac{dL^{S/T}}{dR_A} = \frac{dG^{S/T}}{dR_A} + \sum_{ia} Z_{ia} \frac{dF_{ia}}{dR_A} - \sum_{pq, p \le q} W_{pq} \frac{dS_{pq}}{dR_A} \\ &= \sum_{pq} \frac{dF_{pq}}{dR_A} P_{pq} + 2 \sum_{iajb} \frac{K_{iajb}^{S/T}}{dR_A} (X + Y)_{ia} (X + Y)_{jb} - \sum_{pq, p \le q} W_{pq} \frac{dS_{pq}}{dR_A} \end{split}$$

$$2\sum_{\mu\in A,\nu\notin A} \frac{dh_{\mu\nu}}{dR_A} P_{\mu\nu} + 2\sum_{\mu\in A,\nu\notin A} \frac{d(\mu\nu|rs)}{dR_A} P_{\mu\nu} + 2\sum_{\mu\in A,\nu\notin A} \frac{dV_{\mu\nu}^{XC}}{dR_A} P_{\mu\nu} + 2\sum_{\mu\in A,\nu\notin A} \frac{dV_{\mu\nu}^{XC}}{dR_A} P_{\mu\nu} + 2\sum_{\mu\in A,\nu\notin A} \frac{dV_{\mu\nu}^{XC}}{dR_A} Q_{\mu\nu} + 2\sum_{\mu\in A,\nu\notin A} \frac{d\gamma_{AB}}{dR_A} Q_A + 2\sum_{\mu\in A,\nu\notin A} \frac{d\gamma_{AB}}{dR_A} Q_A + 2\sum_{\mu\in A,\nu\notin A} \frac{dS_{\mu\nu}}{dR_A} Q_{\mu\nu}$$

11

Amsterdam Modelling Suite 2023 Release ADF Engine

Scalar Relativistic Effects Dispersion Singlet-Singlet & Singlet-Triplet Variety of Basis Sets Variety of Pure XC Functionals

TDDFT+TB Emission Energies

TDDFT vs. TDDFT+TB S_n Optimization

60 total chemical systems:

9 diatomic molecules
26 small organic molecules¹
1 gold nanocluster core
10 ligand protected noble metal nanoclusters
14 molecular chromophores²

KANSAS STATE

UNIVERSITY

RMS value: 1.04 eV \rightarrow Diatomic molecules 0.21 eV \rightarrow Organic molecules 0.03 eV \rightarrow LPNMNCs 0.08 eV \rightarrow Chromophores 0.09 eV \rightarrow Singlet-Triplet Excitations in Chromophore Set

Molecule	Method	Runtime	Emission Energy (eV)
LiH	TDDFT	00:01:00	2.31
	TDDFT+TB	00:00:42	2.24
Octatetraene	TDDFT	00:19:03	3.63
	TDDFT+TB	00:05:08	3.65
Cytosine	TDDFT	00:15:55	1.23
	TDDFT+TB	00:04:59	1.21
Au_7^{3+}	TDDFT	01:10:13	1.76
	TDDFT+TB	00:17:00	1.73
Au ₂₂ (PA) ₁₈	TDDFT	17-06:40:45	1.19
	TDDFT+TB	6-13:20:19	1.21

1. J. Chem. Phys., 2008, 128, 134110

J. Chem. Theory Comput. 2015, 11, 1102-1109

TDDFT+TB Optimized S₁ Geometry

Bond Lengths TDDFT vs. TDDFT+TB (Å) -

Tryptamine (C₁₀H₁₂N₂)

7-hydroxyquinoline (C₉H₇NO)

Example – Au_{18}

TDDFT+TB \rightarrow 6 days 70 Geometry Steps $E_{ems} = 1.16 \text{ eV}$ Average Au core = 2.912 \pm 0.098 Å HL Gap = 1.14 eV

Au₁₈(S-Adm)₈(SbPh₃)₄Br₂ 364 Atoms

> Average Au core = $2.902 \pm 0.074 \text{ Å}$ HL Gap = 1.62 eV

TDDFT \rightarrow 12 days 68 Geometry Steps $E_{ems} = 1.18 \text{ eV}$ Average Au core = 2.912 \pm 0.098 Å HL Gap = 1.14 eV

Acknowledgements

Dr. Christine Aikens

KANSAS STATE

Dr. Robert Rüger

Dr. Erik van Lenthe

Dr. Stan van Gisbergen Dr. Olivia Hull

Past and present group members at Kansas State University

