Hands-on exercise 1: molecules

Virtual Winter School on Computational Chemistry, 20 February 2020 Fedor Goumans, goumans@scm.com Ole Carstensen, carstensen@scm.com Thomas Soini, <u>soini@scm.com</u> SCM support: support@scm.com

Getting started with the GUI

Starting ADFjobs: job bookkeeping tool

- Win: dbl-click desktop item
- Mac: open Application
- Linux: run \$ADFBIN/adfjobs
- ADF is a bit separate concerning setting up tasks
- There is 'classic' ReaxFF besides ReaxAMS
 - Both will move to AMS driver engine set up in 2020
- Other GUI modules: (Input, View, Levels, Movie, Spectra, Band Structure, ADFTrain, Microkinetics, COSMO-RS, ...)
 - Can be opened by dbl-clicking '.exe' (Win) or opening e.g. '\$ADFBIN/adfinput'

Basic calculations

switch modules

S setti	lgs		
b types & set u	p /el	search	
Single Point	•	۲	
0 0 T Yes			
Model:SAOP Scalar	•	•	
TZP None	 ▼ ▼ 	•	
Normal	•		
	> = mo	ore deta	ails

Basic calculations

switch modules

S	set	tir	lgs		
obt J odel Pr	ypes & s	Set up	C	searc	:h
	Single Point 0 0		•	۲	
	YesModel:SAOPScalar		*	•	
	TZP None Normal		* *	 ▶ ↑ 	
			<mark>> = mo</mark>	ا <mark>ore de</mark>	<mark>etai</mark> l

GUI input editor controls

Free rotation	left mouse
In-plane rotation	$\mathtt{ctrl} + \mathtt{LMB}$ &
In-plane shift	right mouse
Zoom	mouse wheel
Area selection	shift + LMB
Deselect	LMB on drawi
Undo	ctrl + Z
Redo	shift + ctrl
View along x- / y- / z-axis	ctrl + 1 / ct

- **button** (LMB) & drag drag
- e button (RMB) & drag
- 1 / alt & drag
- ng space
- 1 + Z
- trl + 1 / ctrl + 2 / ctrl + 3

GUI input editor controls

Selection free rotation	LMB & drag f
Selection in-plane rotation	ctrl + LMB
Selection in-plane shift	(shift +) R
Select all atoms	ctrl + A
Add hydrogen atoms	$\mathtt{ctrl} + \mathtt{E}$
Link selected atoms	$\mathtt{ctrl} + \mathtt{L}$
Delete selected atoms	del / backs

More shortcuts: **Help** -> **Shortcuts**

SCM

Virtual Winterschool, Online workshop, part 1 20.02.2020 © SCM

from a selected atom & drag from atom **MB** & drag from atom

space

Using the GUI more efficiently

Chained jobs 1.

- Model -> coordinates use Job results Ο
- E.g. first do pre / partial optimization Ο
- Can not be used to also read in Hessian Ο
 - Python scripting could work (do check on nimag e.g.)

Preset 2.

SCM

- If you always use same XC, basis set, relativity & quality, etc. you can save it: 0
 - File -> Save as preset (all fields different from default)
 - File -> Save as full preset (all input options)
- Load this: File -> Preset -> 'Your preset' on future jobs with the same setting 0
- Adfprepare (& report) 3.
 - In adfjobs select a job, tools -> prepare 0
 - Now you can run the same job but with different settings (e.g. basis set, xc, ...) Ο
 - With adfreport you can build a report to visualize results (e.g. distances) Ο
 - (also consider Python scripting with PLAMS) Ο

Properties Details MultiLev	el Q
Coordinates	0
Job Result	O

20.02.2020 © SCM

Building molecules

www.scm.com/doc/Tutorials/GUI_overview/Building_Molecules.html

- Search molecules
- Import: InChI, SMILES, xyz, cif, pdb, ...
- Included library + building
- **Excercise:** Build acrolein / propenal
 - By searching for it in the GUI
 - By starting from the builder tools Ο use '2' for double bonds, Ctrl+E to add H atoms
 - By importing SMILES, InChI (e.g. from Wikipedia, PubChem or Chemspider)
- Symmetrize (Cs), pre-optimize (UFF, MOPAC, DFTB)

Virtual Winterschool, Online workshop, part 1 20.02.2020 © SCM

Spectra: IR

https://www.scm.com/doc/Tutorials/ADF/Vibrational_frequencies_and_IR_spectrum_of_ethane.html

• Excercise: Calculate & visualize frequencies

- Geometry needs to be optimized at same level as frequency calc.
- ADF (not yet part of AMS): Task = Geometry Opt & Freq
- MOPAC, DFTB: Task = Geometry Opt + Frequencies = Yes
- Try a few different methods:
 - ADF: PBE-D4/DZP + Scalar (.adf)
 - DFTB: DFTB3-D3-BJ/3ob-3-1 (.adf)
 - MOPAC
- Visualize: ADFSpectra; tweak broadening
- Compare to **NIST**

Virtual Winterschool, Online workshop, part 1

20.02.2020 © SCM

Spectra: UV/VIS

Exercise:

- With ADF: calculate 10 allowed excitations
 - use SAOP model potential, DZP (or TZP), no core (.adf)
- See also UV/VIS FAQ for tips
- Go to spectra, change x-axis to nm
- Increase the line width to ~10
- Visualize the pi-pi* NTOs at ~205nm (click on NTO1) Ο
- Visualize the MOs strongest Single Orbital Transition \bigcirc
- Compare to NIST data Ο
 - Rerun with method 'sTDA' and tick TDA
 - Also try TD-DFT+TB (ADF)
 - and TDDFTB (DFTB3/3ob-3-1, GFN-xTB)
 - (can use the same PBE-D4 optimized geometry)

	Task:		S	ingle Point		•	
	XC functional:		М	odel:SAOP		•	
	Relativity:		So	calar		•	
(.adf)							
·	Basis set:		D	ZP		•	
	Frozen core:		N	one		•	
	ADF Main Model	Propert	ies	Details MultiLevel			Q
		Exci	itati	ons (UV/Vis), CD			0
.)	Type of excitations:		Γ	AllowedOnly	•		
n	Method:			Davidson			0
	TDA:		Γ	Yes			
	Number of excitations:			10			
ADFview 2019.302: NTC)01 —	ADFview	v 2019.	302: NTO 0 1		_	 ×
SCM File Add Fields	Select View Properties Help	SCM File	Add	Fields Select View Properties	Help		

h Phase SS A' 0.222723, NTO 1, 0.96 Isosurface: With Phase SS A' 0.222723, NTO 1, 0.9617 occ 0.03						
	h Phase	SS A' 0.222723, NTO 1, 0.96	Isosurface: With Phase	SS A' 0.222723, NTO 1, 0.9617 occ	0.03	□ E
h Phase SS A' 0.222723, NTO 1, 0.96 I Isosurface: With Phase SS A' 0.222723, NTO 1, 0.9617 virt 0.03	h Phase	SS A' 0.222723, NTO 1, 0.96	Isosurface: With Phase	SS A' 0.222723, NTO 1, 0.9617 virt	0.03	- E

11

b, part 1 20.02.2020 © SCM

Spectra: NMR

PES: conformers, scan dihedral

Exercises:

SCM

- Take any acrolein, switch the engine to Conformers, run, visualize -> ADFMovie
 - Does it find all conformers :) ? Maybe try a larger molecule?
 - Switch to, e.g. DFTB, and from Model -> Coordinates, Use: Selected File, select your.sdf
 - Do a frequency run on all geometries and visualize a Boltzmann-averaged spectrum
- Take a DFTB input, set task to PES Scan, click > 0
 - Select dihedral and scan in 19 points from 180-0 (.adf)
 - Wait for calculation to finish -> ADFMovie
 - Select highest, save geometry (to import for TS search)

DFTB Main Model Properties Details	Q
Geometry Constraints an	d PES Scan 🛛 📄 🕐
Convergence details	Ø
Number of scan points for coordinate Results for all PES points: Save	SC-1: 19
- O(4) C(3) C(2) C(1) 180	0.0 ° SC-1 🗘

Transition State (I)

• Exercises:

- New DFTB input, DFTB3-D3-BJ/3ob-3-1
 - Import highest point from PES scan
 - Change Task: Transition State, and calculate frequencies (<u>.adf</u>)
 - Leave all defaults and run, verify 1 imaginary mode
- $_{\odot}$ $\,$ Update geometry and switch to ADF $\,$
 - Change Task: Transition State, click >
 - Next to initial Hessian click again >
 - Choose the dftb.rkf from the DFTB TS as initial Hessian
 - On the main tab, choose Meta -> MN15L, DZP, no core (<u>.adf</u> check restart file!)
 - Verify imaginary modes?
 - Can also use 'TSRC' if no lower-level Hessian

Virtual Winterschool, Online workshop, part 1

ADF Main Model Properties	Details	MultiLevel		Q
Geometr	y Conver	gence		• •
Coordinates used for optimization:	Delocal	ized	-	
After optimization:	Calcula	ate frequencies		
Optimization method:	AUTO		•	
Maximum number of iterations:				
Convergence details				
Maximum radial step:		Å		
Maximum angular step:		0		
Hessian update scheme:	AUTO		•	
Initial Hessian:	💼 F_0	ATA/acrolein-T	S.re	sults/dftb.rkf

n e (.<mark>adf – check restart file</mark>!)

20.02.2020 © SCM

Quick thermodynamic properties

Exercise:

SCM

- Open SCM -> COSMO-RS (no need to install database)
- In the SMILES input, put C=CC=O and Add Ο
- Properties -> Pure compound Ο
- Compare some properties (density, boiling point) (e.g. Wikipedia)

	U
346.746	
51.21	k
524.603	
0.195	L/m
0.816	kg
10.985	
309.848	J/(mol
270.523	
-111.468	kJ/m
-1652.692	kJ/m
-188.906	kJ/m
17.129	kJ/m
-157.71	kJ/m
49.534	kJ/m
213.82	
0.069	L/m
161.085	
10.098	√(MF
213.778	
91.576	
63.229	
	346.746 51.21 524.603 0.195 0.816 10.985 309.848 270.523 -111.468 -1652.692 -188.906 17.129 -157.71 49.534 213.82 0.069 161.085 10.098 213.778 91.576 63.229

Virtual Winterschool, Online workshop, part 1 20.02.2020 © SCM

nit K Dar K nol g/L K) K nol nol nol nol no nol K nol <u>Ра)</u> К $\overset{\text{\AA}^2}{\text{\AA}^3}$

Transition State (II): Ziegler-Natta

• Exercises:

- New DFTB input, GFN-xTB
- Build Cp₂ZrMe⁺ 0
 - structure tool () => ferrocene
 - Right-click Fe -> Element -> Zr
 - Add C and replace by methyl
 - (Use dummies to change CpMCp angle)
 - Model -> Solvent -> Toluene
 - Add charge and optimize (.adf)

 \circ Add ethene (use the \mathbf{Q})

- Manipulate it in position
- Right-click + drag = translate
- Left-click + drag = rotate
- Ctrl+M = select molecule
- Remove dummies (.adf)
- Optimize

SCM

Alkyl Chains Amino Acids Aromatic Cyclic Hydr DNA Ligands Metal Comp Polyhedra Solvents Cp-Zr Cp2Zr_m DETDA EPON862 NIPAM bpy bpy2 Manage Str Save As Str

s ocarbons	* * * * *	XC functional: Relativity:	LDA None	•
lexes		Porphyrins	DZ	
	•	Sandwiches >	Ferrocene Sandwich	-
	•	M2L10 cluster M2L8 cluster ML2 Linear ML3 Trigonal Planar ML4 Square Planar ML4 Tetrahedral ML5 Square Pyramidal ML5 Trigonal Bipyramidal ML6 Octahedral	Nb(C5H5)(C7H7) Sandwich Thoracene Sandwich Triple Porphyrin Sandwich	
uctures ucture		ML6 Trigonal Prismatic ML7 Pentagonal Bipyramidal ML8 Cubic ML8 Square Antiprismatic		

	DFTB Main Model Pr	operties Details		a
		Solvation		0
-	Solvent:	Toluene	•	
	Surface grid:	230		
	Solvation Free Energy:	F Yes		
6				
- · · ·				
1 · K				
C C				
X.0 * 10				
1 x, o * * ¢				

Transition State (II): Ziegler-Natta

Exercise:

- Set up a PES scan, scanning 1 coordinte
 - Zr-C to 2.4 & C-C to 1.55
- Loosen the Convergence criteria by a factor of 5 (.adf)
- When finished, open ADFMovie

- Copy the highest energy structure (e.g. Ctrl+U), or save as structure
- Set up a TS run

SCM

- make sure there are no constraints, and regular convergence
- use a calculate Hessian as initial guess and calculate frequencies (.adf)

Virtual Winterschool, Online workshop, part 1 20.02.2020 © SCM

DFTB	Main	Model	Properties	Details				Q			
	0										
Convergence details											
Numbe	er of scan	points for	or coordinate s:				SC-1: 10				
- C(28) Zr(1) 3.205 2.4						Å	SC-	1			
- C(29) C(25)				3.295	1.55	Å	SC-	1 📫			
 + All bonds in region: Auto_Genera + selected atoms (fix positions) + C(29) C(25) (distance) 											
Gradient convergence:					5.	0e-3	Hartree/Å				
Energy convergence:					5.	0e-5	Hartree				

Step convergence:

5.0e-3 Å

Transition State (III): Ziegler-Natta

Exercise:

- Optimize the product from the last PES scan point (.adf)
- Rotate the Zr-C-C-H dihedral to ~0 (metallacycle Zr-C-C-H) & optimize (.adf)
- Set up a climbing nudged elastic band calculation Task: NEB Ο
- Choose this structure as final, the other product as intermediate, and R as initial (import) structures from the ams.rkf) and choose 12 points
- Don't optimize R&P, relax convergence by factor 4^{*} (.adf)
- **Open ADFMovie when finished**
 - Which is the rate-determining step?

Virtual Winterschool, Online workshop, part 1 20.02.2020 © SCM

Number of images:	12			
Initial system:	Mol-3			
Final system:	Mol-1			
Intermediate system:	Mol-2			

* Tip: use NEB to get close to TS, then use Hessian-based optimization to find it

Transition States: Further considerations

Reaction rates:

SCM

Calculate $\Delta G^{\#}$: include H_{vib}, S (ADFoutput -> Other Properties -> Statistical Thermal Analsyis)

Temp			Transl	Rotat	Vibrat	Total
298.15	Entropy (cal/mole-K): Internal Energy (Kcal/ Constant Volume Heat C	42.601 0.889 2.981	31.219 0.889 2.981	51.511 161.150 55.756	125.331 162.927 61.718	
	Summary of energy cerm	hartree	eV		kcal/mol	kJ/mol
	Bond Energy: Internal Energy: pV/n = RT: Enthalpy H: -T*S: Gibbs free energy:	-37.588359904200161 0.259640981269797 0.000944186013486 -37.327774736916879 -0.059548659150599 -37.387323396067480	-1022.83 7.06 0.02 -1015.74 -1.62 -1017.36	 13 52 57 04 04 08	-23587.05 162.93 0.59 -23423.53 -37.37 -23460.90	-98688.22 681.69 2.48 -98004.06 -156.34 -98160.40

- Use harmonic TST as first approximation: $k = \exp(-G^{\#}/RT)$
- Could also try mircokinetics. More underway (ReaxPro)

<u>Suggestions</u> / troubleshooting

- 1. get close to TS: NEB, PES Scan, constrained opt, previous TS + change ligands (PLAMS script!),
- 2. get a good curvature (Hessian): pre-calc with GFN-xTB, MOPAC; partial Hessian
- check final curvature / path: Frequency calculation, PES point characterization, IRC 3.
- Spurious imag. Freq.: displace along that mode (ADFMovie) & retry 4.