

Chemistry & Materials Science with the
 Amsterdam Modeling Suite 2019
 Hands-On Session Part 2 – Periodic Systems

Thomas M. Soini Virtual Winter School on Computational Chemistry February 2020

Overview

- Handling periodic systems
- Hands-on exercises
 - Electronic structure of PdS₂ slab models
 - Mechanical properties of polymers: see example below & advanced tutorial "Mechanical properties of epoxy polymers"

Periodic Systems

- Import structures
- Prepare slab models

Crystal Structures

- Build from scratch in GUI: periodic atomistic editor activates when using a periodic engine
- Amsterdam Modeling Suite template library: Access via in GUI
- - From previous input (.adf) or output (.rkf) files
 - AMS internal format (i.e. xyz-file + lattice vectors)
 - .cif files from external sources like:
 - crystallography.net
 - materialsproject.org
 - article supporting information etc.

PdS₂ Crystal

- ► Preoptimized PdS₂ structure: import file
 PdS2.cif via File → Import Coordinates...
- Useful tools for periodic systems:

```
Edit \rightarrow Crystal \rightarrow
```

• E.g. map atoms back to unit cell:

```
Edit \rightarrow Crystal \rightarrow Map Atoms to (0..1)
```


lumber of atoms imported: 6, formula Pd2 S4

6 atoms selected

- Create slab model:
 - ► Edit → Crystal → Generate Slab...

Generate Slab	
Miller indices: 0 0 1	
Number of layers: 2	
Select one atom to slice through that atom	i
	Close Generate Slab

Press ctrl + 1 to change perspective and select atom S(4)

- Click Generate Slab
- File → Save as → Enter PdS2_Bilayer.adf

Repeat with Number of layers:

1

File → Save as → Enter PdS2_Monolayer.adf

SCM Band Structures

- Settings
- Band structure program
- DOS

Band Structure Settings

- ► Task: → Single Point
- ► XC functional \rightarrow GGA \rightarrow PBE
- ▶ Relativity (ZORA) → Scalar
- ▶ Basis Set: → DZP
- Tick Calculate DOS
- Tick Calculate band structure
 - Click on
 next to it

BAND Main M	odel Properties	Details MultiLevel		Q
				0
Task:	[Single Point	•	Ø
Phonons:	Г	Yes		Ø
Periodicity:	[Slab	-	Ð
Total charge:	ſ	0.0		
Spin polarization:				
Unrestricted:		Yes		
XC functional:		GGA:PBE	•	Ð
Relativity (ZORA):		Scalar	Ŧ	Ð
Basis set:		DZP	*	Ð
Frozen core:	[Large	•	
Numerical quality:	[Normal	•	Ð
Calculate DOS:		Yes		Ð
Calculate band stru	cture:	Yes		O

Band Structure Settings

- ▶ Interpolation delta-K: \rightarrow 0.03
- Energy above Fermi level: 20 eV
- Energy below Fermi level: 50 eV

BAND	Main	Model	Properties	Detail	s Mul	tiLevel		Q
Band Structure								• •
Calcula	te band s	tructure	. =	Yes				
Interpo	lation del	ta-K:			0.03	Bohr ⁻¹		
Calcula	Calculate fatbands:			Yes				
Use syr	Use symmetry:			Yes				
Energy	above Fe	ermi level	:		20	eV		
Energy	below Fe	rmi level	:		50	eV		
Automa	atic gener	ate path	: 💻	Yes				
Custom	n path:							

► Repeat for both systems and run calculations with File → Run

Band Structure Analysis

ADF jobs opens

- After calculations finish
 - SCM → Band Structure

Band Structure Analysis

- Comparing both band structures:
 - Semiconducting monolayer
 - Conducting bilayer

"A Single-Material Logical Junction Based on 2D Crystal PdS2" M. Ghorbani-Asl, A. Kuc, P. Miró, T. Heine, Adv. Materials 28 (2016)

Mechanical

Properties

- Small polymer toy system
- Stress-strain analysis
- Online version <u>here</u>
- Full-blown realistic <u>tutorial</u>

Example

cis-Polyacetylene

- 3D periodic model in 19×19×19 Å (required by ReaxFF)
- ► File → Import Coordinates...

- Alternatively: Build from scratch (demo)
- Strain in z-direction: induces transition to trans-Polyacetylene
- Even more strain: polymer chain snaps

Setup MD Calculation

► File → Import Coordinates... Pick cis_PA.xyz Select ReaxFF Force Field: CHO.ff Number of iterations: 1000000 Method: NPT Berendsen Temperature: 300.15 K Pressure: 0.101 MPa Damping constant: 1500.0 fs Stress: Stress energy

ReaxFF Main Mod	lel Properties	s Details		Q
Task:	Molecular Dy	/namics	•	Ð
Periodicity:	Bulk		•	Ð
Force field:	CHO.ff			2
Corrected torsions:	Tes			
Number of iterations:	1000000			
Start with:	0	non-reactive	iterations	
Time step:	0.25	fs		
Method:	NPT Berends	sen	•	
Temperature:	300.15	к		
Damping constant:	100.0	fs		
Pressure:	1.01	bar		
Damping constant:	1500.0	fs		
Stress:	Stress energ	у	•	

Strain Rate

- ▶ Details → Molecular Dynamics
 - Fix cell parameters (NPT only): c
 - Output frequency: KF result file: 2000 (saves disk space)
- ► Model → Volume Regime
 - Click on +
 - Cell parameter: select c
 - Change: 0.000008

ReaxFF	Main	Model	Properties	B Details			Q
			Volu	ne Regime			•
+ Reg	gime						
Itera	ation	Cell p	arameter	Change	Rescale		
0		с	•	0.000008	no	-	

See Advanced Tutorial on www.scm.com for calculation of strain rate

Run & Evaluation

- ▶ File → Save & File → Run
- Use ADFmovie to see polymer change under strain
- After calculation is completed
 - ► Open console (via Help → Terminal or Command Line)
 - startpython stress_strain_curve.py JOBNAME.rxkf
- Plot stress_zz component against strain_z, e.g.:
 - Type gnuplot
 - plot "stress-strain-curve.csv" using 3:6

