Example: TD-CDFT for hydrogen chain (OldResponse)¶
The input for a one-dimensional system is no different from that for a three-dimensional system. Besides the number of frequencies, and the beginning and end frequency of the frequency range, the OLDRESPONSE key block should contain stricter than default convergence criteria (cnvi
and cnvj
) for the fit coefficients describing the density change.
$ADFBIN/band << eor
DefaultsConvention pre2014
Title H2-chain
ACCURACY 5
KSPACE 3
DEPENDENCY BASIS 1e-10
OLDRESPONSE
nfreq 10
strtfr 0.0
endfr 0.408171
cnvi 1d-5
cnvj 1d-5
END
DEFINE
HX = 4.5
END
LATTICE
HX
END
ATOMS
H 1.0 0.001 0.0
H -1.0 -0.001 0.0
END
END INPUT
eor
The output for this calculation will give rise to a table like the following one:
=================================================================
== Frequency === Polarizability(xx) ==
== a.u. == e.V. === Re == Im ==
=================================================================
0.166667E-02 0.453512E-01 127.119 0.00000
0.333333E-02 0.907023E-01 127.201 0.00000
0.500000E-02 0.136054 127.338 0.00000
0.666667E-02 0.181405 127.530 0.00000
0.833333E-02 0.226756 127.778 0.00000
0.100000E-01 0.272107 128.083 0.00000
0.116667E-01 0.317458 128.446 0.00000
0.133333E-01 0.362809 128.868 0.00000
0.150000E-01 0.408161 129.351 0.00000
=================================================================
== Frequency === Chi_JJ (xx) ==
== a.u. == e.V. === Re == Im ==
=================================================================
0.00000 0.00000 -2.74118 0.00000
0.166667E-02 0.453512E-01 -2.74153 0.00000
0.333333E-02 0.907023E-01 -2.74259 0.00000
0.500000E-02 0.136054 -2.74436 0.00000
0.666667E-02 0.181405 -2.74685 0.00000
0.833333E-02 0.226756 -2.75005 0.00000
0.100000E-01 0.272107 -2.75399 0.00000
0.116667E-01 0.317458 -2.75866 0.00000
0.133333E-01 0.362809 -2.76409 0.00000
0.150000E-01 0.408161 -2.77028 0.00000
=================================================================