Example: ESR g-tensor, A-tensor, self consistent spin-orbit coupling: VO¶
The ESR parameters of VO are calculated with the collinear approximation for unrestricted Spin-Orbit coupled calculations. In this example the VO-molecule has three unpaired electrons.
You calculate Electron Spin Resonance properties with the keywords ESR and QTENS. ESR is a block-type key and is used to compute the G-tensor or the Nuclear Magnetic Dipole Hyperfine interaction. QTENS is a simple key and invokes the computation of the Nuclear Electric Quadrupole Hyperfine interaction.
Proper usage of the key ESR requires that you do one of the following:
- A Spin-Orbit calculation, spin-restricted, with exactly one unpaired electron, or (b) A Spin-Orbit calculation, spin-unrestricted in the collinear approximation, or (c) No Spin-Orbit terms and spin-unrestricted.
In case (a) and (b) you obtain the G-tensor. In case (b) and (c) you get the Magnetic Dipole Hyperfine interaction.
Note: in case (a) the program also prints a Magnetic Dipole Hyperfine interaction data, but these have then been computed without the terms from the spin-density at the nucleus. Note: in case (b) and (c) one can have more than one unpaired electron. Note: in case (b) one has to use symmetry NOSYM.
Two calculations are performed:
- Scalar relativistic spin-unrestricted (case c)
- Spin-Orbit relativistic spin-unrestricted collinear (case b)
After the preliminary calculations (DIRAC, to get the relativistic TAPE12 file with relativistic potentials, and the Create runs), we first calculate the Dipole Hyperfine interaction: a spin-unrestricted calculation without Spin-Orbit coupling.
Note that one has to use ALLPOINTS in the calculation for a linear molecule to get results for the nuclear magnetic dipole hyperfine interaction. For an accurate calculation of the hyperfine interaction the numerical quality is set to VeryGood.
$ADFBIN/adf << eor
Atoms
V 0 0 0
O 0 0 1.589
End
XC
GGA Becke Perdew
End
esr
end
qtens
allpoints
unrestricted
charge 0 3
Relativistic Scalar ZORA
CorePotentials t12.rel &
V 1
O 2
End
NumericalQuality verygood
Fragments
V t21.V
O t21.O
End
End input
eor
Then a spin-orbit coupled spin-unrestricted calculation is performed using the collinear approximation. Note that symmetry NOSYM is used.
$ADFBIN/adf << eor
Atoms
V 0 0 0
O 0 0 1.589
End
XC
GGA Becke Perdew
End
esr
end
qtens
symmetry nosym
unrestricted
collinear
Relativistic Spinorbit ZORA
CorePotentials t12.rel &
V 1
O 2
End
NumericalQuality verygood
Fragments
V t21.V
O t21.O
End
End input
eor